
Chrystel Faure

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5021364/publications.pdf Version: 2024-02-01

CHOVETEL FALLDE

#	Article	IF	CITATIONS
1	Gold Nanoparticles Spontaneously Generated in Onion-Type Multilamellar Vesicles. Bilayersâ^'Particle Coupling Imaged by Cryo-TEM. Chemistry of Materials, 2004, 16, 5280-5285.	6.7	64
2	Encapsulation of rutin and naringenin in multilamellar vesicles for optimum antioxidant activity. Food Chemistry, 2014, 159, 12-19.	8.2	64
3	The effect of surfactant crystallization on partial coalescence in O/W emulsions. Journal of Colloid and Interface Science, 2017, 500, 304-314.	9.4	58
4	Polypyrrole-glucose oxidase biosensorEffect of enzyme encapsulation in multilamellar vesicles on analytical properties. Biosensors and Bioelectronics, 2008, 23, 788-794.	10.1	44
5	Radiation-Induced Synthesis of Gold Nanoparticles within Lamellar Phases. Formation of Aligned Colloidal Gold by Radiolysis. Langmuir, 2008, 24, 4421-4425.	3.5	42
6	A New Bioâ€Inspired Route to Metalâ€Nanoparticleâ€Based Heterogeneous Catalysts. Small, 2008, 4, 1806-1812	2.10.0	31
7	Synthesis of stable, gold-particle-containing onion-type multilamellar vesicles. Influence of particle size on the onions' internal structure. Nanotechnology, 2006, 17, 1193-1201.	2.6	27
8	What is the fate of multi-lamellar liposomes of controlled size, charge and elasticity in artificial and animal skin?. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 151, 18-31.	4.3	26
9	Emulsification of non-aqueous foams stabilized by fat crystals: Towards novel air-in-oil-in-water food colloids. Food Chemistry, 2019, 293, 49-56.	8.2	24
10	O/W Pickering emulsions stabilized by cocoa powder: Role of the emulsification process and of composition parameters. Food Research International, 2019, 116, 755-766.	6.2	23
11	Quantitative study of the encapsulation of glucose oxidase into multilamellar vesicles and its effect on enzyme activity. Journal of Chemical Physics, 2003, 119, 6111-6118.	3.0	21
12	Modeling Leakage Kinetics from Multilamellar Vesicles for Membrane Permeability Determination: Application to Glucose. Biophysical Journal, 2006, 91, 4340-4349.	0.5	20
13	Magnetic Multilamellar Liposomes Produced by In Situ Synthesis of Iron Oxide Nanoparticles: "Magnetonions― Journal of Physical Chemistry B, 2009, 113, 8552-8559.	2.6	18
14	Production of magnetic multilamellar liposomes as highly T2-efficient MRI contrast agents. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 18-21.	3.3	18
15	Encapsulation of ε-viniferin in onion-type multi-lamellar liposomes increases its solubility and its photo-stability and decreases its cytotoxicity on Caco-2 intestinal cells. Food and Function, 2019, 10, 2573-2582.	4.6	18
16	Gold fractal structures spontaneously grown in sheared lamellar phase. Journal of Materials Chemistry, 2006, 16, 3552.	6.7	17
17	Pickering emulsions stabilized by various plant materials: Cocoa, rapeseed press cake and lupin hulls. LWT - Food Science and Technology, 2020, 130, 109621.	5.2	16
18	Effect of onion-type multilamellar liposomes on Trametes versicolor laccase activity and stability. Biochimie, 2012, 94, 59-65.	2.6	12

CHRYSTEL FAURE

#	Article	IF	CITATIONS
19	Tissular Distribution and Metabolism of trans-ε-Viniferin after Intraperitoneal Injection in Rat. Nutrients, 2018, 10, 1660.	4.1	12
20	Superhydrophobic, highly adhesive arrays of copper hollow spheres produced by electro-colloidal lithography. Soft Matter, 2017, 13, 5500-5505.	2.7	11
21	Encapsulation of ε-Viniferin into Multi-Lamellar Liposomes: Development of a Rapid, Easy and Cost-Efficient Separation Method to Determine the Encapsulation Efficiency. Pharmaceutics, 2021, 13, 566.	4.5	10
22	Deposit of UV- or Î ³ -synthesized gold nanoparticles on TiO2 powder using lipid-based multilamellar vesicles. Colloid and Polymer Science, 2012, 290, 1015-1022.	2.1	9
23	Electro-colloidal lithography: a versatile approach combining colloidal particles and electrical fields for the fabrication of patterned polymer and metal films. Soft Matter, 2012, 8, 3053.	2.7	8
24	Redispersible dry emulsions stabilized by plant material: Rapeseed press-cake or cocoa powder. LWT - Food Science and Technology, 2019, 113, 108311.	5.2	8
25	Electrodeposition of Polymer Nanodots with Controlled Density and Their Reversible Functionalization by Polyhistidine-Tag Proteins. Langmuir, 2012, 28, 13968-13975.	3.5	5
26	Trans-ε-Viniferin Encapsulation in Multi-Lamellar Liposomes: Consequences on Pharmacokinetic Parameters, Biodistribution and Glucuronide Formation in Rats. Nutrients, 2021, 13, 4212.	4.1	4
27	Doubleâ€Emulsion Globules as a Tool to Produce 2D Patterned Metal Deposits Using Electroâ€Colloidal Lithography. Advanced Materials Interfaces, 2014, 1, 1400072.	3.7	3
28	Arrays of copper rings with tunable dimensions via electro-colloidal lithography. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 488, 100-109.	4.7	2
29	Cu2+-loaded cellulose micro-beads applied to the direct patterning of metallic surfaces using a fast and convenient process. Carbohydrate Polymers, 2019, 207, 492-501.	10.2	1