Fabio A Bendana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5020986/publications.pdf

Version: 2024-02-01

1040056 21 238 9 citations h-index papers

g-index 21 21 21 104 docs citations times ranked citing authors all docs

1199594

12

#	Article	IF	CITATIONS
1	Spatially-resolved characteristic velocity (c*) measurements for hybrid rocket combustion analysis using laser spectroscopy. , 2022, , .		O
2	Nonequilibrium Vibrational, Rotational, and Translational Thermometry via Megahertz Laser Absorption of CO. Journal of Thermophysics and Heat Transfer, 2022, 36, 266-275.	1.6	18
3	Exploiting line-mixing effects for laser absorption spectroscopy at extreme combustion pressures. Proceedings of the Combustion Institute, 2021, 38, 1685-1693.	3.9	11
4	Competitive oxidation of methane and <mml:math altimg="si23.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>C</mml:mtext><mml:mn>2</mml:mn></mml:msub></mml:math> hydrocarbons discerned by isotopic labeling and laser absorption spectroscopy of CO isotopologues in shock-heated mixtures. Combustion and Flame, 2021, 224, 54-65.	5.2	7
5	Simultaneous vibrational, rotational, and translational thermometry based on laser absorption of CO in shock-induced non-equilibrium. , 2021, , .		O
6	Swirl injection in hybrid polymethylmethacrylate combustion assessed by thermochemical imaging, , 2021, , .		1
7	Localized characteristic velocity (c*) for rocket combustion analysis based on gas temperature and composition via laser absorption spectroscopy. Measurement Science and Technology, 2021, 32, 125203.	2.6	5
8	Injector Effects on Hybrid Polymethylmethacrylate Combustion Assessed by Thermochemical Tomography. Journal of Propulsion and Power, 2021, 37, 928-943.	2.2	7
9	MHz mid-infrared laser absorption sensor for carbon monoxide and temperature behind detonation waves. , 2020, , .		8
10	In-situ thermochemical analysis of hybrid rocket fuel oxidation via laser absorption tomography of CO , \$\$ext CO , \$\$, \$\$ext CO , and \$\$ex	2.4	15
11	Assessing Oxidizer Injector Design via Thermochemical Imaging of PMMA Combustion in a Hybrid Rocket Motor Geometry. , 2020, , .		5
12	Line mixing and broadening of carbon dioxide by argon in the v3 bandhead near 4.2µm at high temperatures and high pressures. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 253, 107135.	2.3	22
13	Laser absorption of carbon dioxide at the vibrational bandhead near 4.2 \hat{l} /4m in high-pressure rocket combustion environments. , 2020, , .		1
14	Multi-isotopologue laser absorption spectroscopy of carbon monoxide for high-temperature chemical kinetic studies of fuel mixtures. Combustion and Flame, 2019, 207, 379-390.	5.2	33
15	Cross-band infrared laser absorption of carbon monoxide for thermometry and species sensing in high-pressure rocket flows. Applied Physics B: Lasers and Optics, 2019, 125, 1.	2.2	16
16	Line mixing and broadening in the $v(1\hat{a}\dagger'3)$ first overtone bandhead of carbon monoxide at high temperatures and high pressures. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 239, 106636.	2.3	30
17	Thermochemical structure of a hybrid rocket reaction layer based on laser absorption tomography. , 2019, , .		5
18	Design-build-launch: a hybrid project-based laboratory course for aerospace engineering education. Acta Astronautica, 2019, 157, 29-39.	3.2	13

#	Article	IF	CITATIONS
19	Infrared laser absorption thermometry and CO sensing in high-pressure rocket combustion flows from 25 to 105 bar. , 2019, , .		7
20	Wavelength modulation spectroscopy near 5Â\$\$upmu\$\$m for carbon monoxide sensing in a high-pressure kerosene-fueled liquid rocket combustor. Applied Physics B: Lasers and Optics, 2018, 124, 1.	2.2	30
21	Laser Absorption Spectroscopy of Carbon Monoxide near 4.97 μm for Temperature and Species Measurements in Hydrocarbon-Fueled Rockets. , 2018, , .		4