Yousong Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5020774/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host and Microbe, 2020, 27, 325-328.	11.0	1,860
2	Sequential Reassortments Underlie Diverse Influenza H7N9 Genotypes in China. Cell Host and Microbe, 2013, 14, 446-452.	11.0	141
3	Mapping of H3N2 influenza antigenic evolution in China reveals a strategy for vaccine strain recommendation. Nature Communications, 2012, 3, 709.	12.8	88
4	Nematode-Encoded RALF Peptide Mimics Facilitate Parasitism of Plants through the FERONIA Receptor Kinase. Molecular Plant, 2020, 13, 1434-1454.	8.3	67
5	Predicting the receptor-binding domain usage of the coronavirus based on kmer frequency on spike protein. Infection, Genetics and Evolution, 2018, 61, 183-184.	2.3	55
6	Prokaryotic virus host predictor: a Gaussian model for host prediction of prokaryotic viruses in metagenomics. BMC Biology, 2021, 19, 5.	3.8	50
7	A comprehensive surveillance of adamantane resistance among human influenza A virus isolated from mainland China between 1956 and 2009. Antiviral Therapy, 2010, 15, 853-860.	1.0	48
8	Antigenic Patterns and Evolution of the Human Influenza A (H1N1) Virus. Scientific Reports, 2015, 5, 14171.	3.3	47
9	Identification and characterization of circRNAs encoded by MERS-CoV, SARS-CoV-1 and SARS-CoV-2. Briefings in Bioinformatics, 2021, 22, 1297-1308.	6.5	37
10	VirusCircBase: a database of virus circular RNAs. Briefings in Bioinformatics, 2021, 22, 2182-2190.	6.5	36
11	Microbiome Profiling Using Shotgun Metagenomic Sequencing Identified Unique Microorganisms in COVID-19 Patients With Altered Gut Microbiota. Frontiers in Microbiology, 2021, 12, 712081.	3.5	35
12	New Insights into the Nonconserved Noncoding Region of the Subtype-Determinant Hemagglutinin and Neuraminidase Segments of Influenza A Viruses. Journal of Virology, 2014, 88, 11493-11503.	3.4	31
13	Cell membrane proteins with high N-glycosylation, high expression and multiple interaction partners are preferred by mammalian viruses as receptors. Bioinformatics, 2019, 35, 723-728.	4.1	31
14	Rapid identification of humanâ€infecting viruses. Transboundary and Emerging Diseases, 2019, 66, 2517-2522.	3.0	31
15	Homologous recombination shapes the genetic diversity of African swine fever viruses. Veterinary Microbiology, 2019, 236, 108380.	1.9	26
16	Compositional diversity and evolutionary pattern of coronavirus accessory proteins. Briefings in Bioinformatics, 2021, 22, 1267-1278.	6.5	26
17	A universal computational model for predicting antigenic variants of influenza A virus based on conserved antigenic structures. Scientific Reports, 2017, 7, 42051.	3.3	22
18	Classification and characterization of multigene family proteins of African swine fever viruses. Briefings in Bioinformatics, 2021, 22, .	6.5	22

YOUSONG PENG

#	Article	IF	CITATIONS
19	Correlation of Influenza Virus Excess Mortality with Antigenic Variation: Application to Rapid Estimation of Influenza Mortality Burden. PLoS Computational Biology, 2010, 6, e1000882.	3.2	21
20	Continual Antigenic Diversification in China Leads to Global Antigenic Complexity of Avian Influenza H5N1 Viruses. Scientific Reports, 2017, 7, 43566.	3.3	21
21	Predicting the host of influenza viruses based on the word vector. PeerJ, 2017, 5, e3579.	2.0	19
22	Network of co-mutations in Ebola virus genome predicts the disease lethality. Cell Research, 2015, 25, 753-756.	12.0	17
23	Inferring the antigenic epitopes for highly pathogenic avian influenza H5N1 viruses. Vaccine, 2014, 32, 671-676.	3.8	15
24	RAEdb: a database of enhancers identified by high-throughput reporter assays. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	3.0	15
25	Monitoring infectious diseases in the big data era. Science Bulletin, 2015, 60, 144-145.	9.0	13
26	Cluster-Transition Determining Sites Underlying the Antigenic Evolution of Seasonal Influenza Viruses. Molecular Biology and Evolution, 2019, 36, 1172-1186.	8.9	13
27	Computed Tomography-Based Machine Learning Differentiates Adrenal Pheochromocytoma From Lipid-Poor Adenoma. Frontiers in Endocrinology, 2022, 13, 833413.	3.5	13
28	Phage protein receptors have multiple interaction partners and high expressions. Bioinformatics, 2020, 36, 2975-2979.	4.1	12
29	Prediction of the Receptorome for the Human-Infecting Virome. Virologica Sinica, 2021, 36, 133-140.	3.0	11
30	Prediction of antiviral drugs against African swine fever viruses based on protein–protein interaction analysis. PeerJ, 2020, 8, e8855.	2.0	11
31	Integrating computational modeling and functional assays to decipher the structure-function relationship of influenza virus PB1 protein. Scientific Reports, 2015, 4, 7192.	3.3	8
32	PREDAC-H5: A user-friendly tool for the automated surveillance of antigenic variants for the HPAI H5N1 virus. Infection, Genetics and Evolution, 2014, 28, 62-63.	2.3	7
33	Antigenic variation of the human influenza A (H3N2) virus during the 2014–2015 winter season. Science China Life Sciences, 2015, 58, 882-888.	4.9	7
34	FluPhenotype—a one-stop platform for early warnings of the influenza A virus. Bioinformatics, 2020, 36, 3251-3253.	4.1	7
35	Influenza A virus utilizes a suboptimal Kozak sequence to fine-tune virus replication and host response. Journal of General Virology, 2015, 96, 756-766.	2.9	6
36	An atlas of human viruses provides new insights into diversity and tissue tropism of human viruses. Bioinformatics, 2022, 38, 3087-3093.	4.1	6

YOUSONG PENG

#	Article	IF	CITATIONS
37	PREDAC-H3: a user-friendly platform for antigenic surveillance of human influenza a(H3N2) virus based on hemagglutinin sequences. Bioinformatics, 2016, 32, 2526-2527.	4.1	5
38	virusMED: an atlas of hotspots of viral proteins. IUCrJ, 2021, 8, 931-942.	2.2	5
39	Prediction of coronavirus 3C-like protease cleavage sites using machine-learning algorithms. Virologica Sinica, 2022, 37, 437-444.	3.0	5
40	cooccurNet: an R package for co-occurrence network construction and analysis. Bioinformatics, 2017, 33, 1881-1882.	4.1	4
41	Progress and Challenge in Computational Identification of Influenza Virus Reassortment. Virologica Sinica, 2021, 36, 1273-1283.	3.0	4
42	Identification of a Type-Specific Promoter Element That Differentiates between Influenza A and B Viruses. Journal of Virology, 2019, 93, .	3.4	3
43	Identification of genome-wide nucleotide sites associated with mammalian virulence in influenza A viruses. Biosafety and Health, 2020, 2, 32-38.	2.7	3
44	Computational Viromics: Applications of the Computational Biology in Viromics Studies. Virologica Sinica, 2021, 36, 1256-1260.	3.0	3
45	A comprehensive microsatellite landscape of human Y-DNA at kilobase resolution. BMC Genomics, 2021, 22, 76.	2.8	3
46	Large discrepancy between the two-way rNHT distances in hemagglutinin-inhibition assay. Virologica Sinica, 2016, 31, 441-443.	3.0	1
47	PREDAV-H1: a user-friendly web server for predicting antigenic variants of influenza H1N1 viruses. Science China Life Sciences, 2019, 62, 426-427.	4.9	1
48	Automated recommendation of the seasonal influenza vaccine strain with PREDAC. Biosafety and Health, 2020, 2, 117-119.	2.7	1
49	Web-Weka Meets D3.js in Web Based Medical Data Mining. , 2015, , .		Ο
50	Prediction of influenza epidemics at the province level in China using search query from "Haosou― , 2015, , .		0
51	EVIHVR: A platform for analysis of expression, variation and identification of human virus receptors. , 2022, , .		Ο