Raffaella Molteni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5020204/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience, 2002, 112, 803-814.	1.1	763
2	Voluntary Exercise Induces a BDNF-Mediated Mechanism That Promotes Neuroplasticity. Journal of Neurophysiology, 2002, 88, 2187-2195.	0.9	578
3	Voluntary exercise following traumatic brain injury: brain-derived neurotrophic factor upregulation and recovery of function. Neuroscience, 2004, 125, 129-139.	1.1	423
4	Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. European Journal of Neuroscience, 2002, 16, 1107-1116.	1.2	371
5	Serum and plasma BDNF levels in major depression: A replication study and meta-analyses. World Journal of Biological Psychiatry, 2010, 11, 763-773.	1.3	363
6	Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Frontiers in Cellular Neuroscience, 2014, 8, 430.	1.8	362
7	Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor. Neuroscience, 2004, 123, 429-440.	1.1	305
8	Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8708-8713.	3.3	272
9	Mode of action of agomelatine: Synergy between melatonergic and 5-HT _{2C} receptors. World Journal of Biological Psychiatry, 2011, 12, 574-587.	1.3	262
10	Neuronal plasticity: A link between stress and mood disorders. Psychoneuroendocrinology, 2009, 34, S208-S216.	1.3	253
11	Statins prevent endothelial cell activation induced by antiphospholipid (anti-?2-glycoprotein I) antibodies: Effect on the proadhesive and proinflammatory phenotype. Arthritis and Rheumatism, 2001, 44, 2870-2878.	6.7	250
12	A saturated-fat diet aggravates the outcome of traumatic brain injury on hippocampal plasticity and cognitive function by reducing brain-derived neurotrophic factor. Neuroscience, 2003, 119, 365-375.	1.1	209
13	Stress during development: Impact on neuroplasticity and relevance to psychopathology. Progress in Neurobiology, 2007, 81, 197-217.	2.8	191
14	Nicotine Prevents Experimental Parkinsonism in Rodents and Induces Striatal Increase of Neurotrophic Factors. Journal of Neurochemistry, 1998, 71, 2439-2446.	2.1	187
15	Voluntary exercise increases axonal regeneration from sensory neurons. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8473-8478.	3.3	151
16	The serotonin–BDNF duo: Developmental implications for the vulnerability to psychopathology. Neuroscience and Biobehavioral Reviews, 2014, 43, 35-47.	2.9	143
17	Chronic Duloxetine Treatment Induces Specific Changes in the Expression of BDNF Transcripts and in the Subcellular Localization of the Neurotrophin Protein. Neuropsychopharmacology, 2007, 32, 2351-2359.	2.8	110
18	Reduced function of the serotonin transporter is associated with decreased expression of BDNF in rodents as well as in humans. Neurobiology of Disease, 2010, 37, 747-755.	2.1	107

#	Article	IF	CITATIONS
19	Acute Stress Responsiveness of the Neurotrophin BDNF in the Rat Hippocampus is Modulated by Chronic Treatment with the Antidepressant Duloxetine. Neuropsychopharmacology, 2009, 34, 1523-1532.	2.8	104
20	Chronic treatment with fluoxetine up-regulates cellular BDNF mRNA expression in rat dopaminergic regions. International Journal of Neuropsychopharmacology, 2006, 9, 307.	1.0	103
21	Chronic fluoxetine administration inhibits extracellular signal-regulated kinase 1/2 phosphorylation in rat brain. Journal of Neurochemistry, 2005, 93, 1551-1560.	2.1	98
22	Modulation of fibroblast growth factor-2 by stress and corticosteroids: from developmental events to adult brain plasticity. Brain Research Reviews, 2001, 37, 249-258.	9.1	92
23	Stress-induced anhedonia is associated with the activation of the inflammatory system in the rat brain: Restorative effect of pharmacological intervention. Pharmacological Research, 2016, 103, 1-12.	3.1	91
24	Stress-Induced Changes of Hippocampal NMDA Receptors: Modulation by Duloxetine Treatment. PLoS ONE, 2012, 7, e37916.	1.1	90
25	Modulation of the inflammatory response in rats chronically treated with the antidepressant agomelatine. European Neuropsychopharmacology, 2013, 23, 1645-1655.	0.3	88
26	The impact of environmental enrichment on sex-specific neurochemical circuitries – Effects on brain-derived neurotrophic factor and the serotonergic system. Neuroscience, 2012, 220, 267-276.	1.1	84
27	Alterations in BDNF and Synapsin I within the Occipital Cortex and Hippocampus after Mild Traumatic Brain Injury in the Developing Rat: Reflections of Injury-Induced Neuroplasticity. Journal of Neurotrauma, 2002, 19, 803-814.	1.7	83
28	Antipsychotic drug actions on gene modulation and signaling mechanisms. , 2009, 124, 74-85.		75
29	Regulation of NMDA receptor subunit mRNA expression in the rat brain during postnatal development. Molecular Brain Research, 1994, 25, 209-216.	2.5	72
30	Developmental and stress-related changes of neurotrophic factor gene expression in an animal model of schizophrenia. Molecular Psychiatry, 2001, 6, 285-292.	4.1	71
31	Effect of antipsychotic drugs on brain-derived neurotrophic factor expression under reduced N-methyl-D-aspartate receptor activity. Journal of Neuroscience Research, 2003, 72, 622-628.	1.3	68
32	Quetiapine regulates FGF-2 and BDNF expression in the hippocampus of animals treated with MK-801. NeuroReport, 2004, 15, 2109-2112.	0.6	66
33	Synergistic mechanisms in the modulation of the neurotrophin BDNF in the rat prefrontal cortex following acute agomelatine administration. World Journal of Biological Psychiatry, 2010, 11, 148-153.	1.3	60
34	Modulation of neuroplastic molecules in selected brain regions after chronic administration of the novel antidepressant agomelatine. Psychopharmacology, 2011, 215, 267-275.	1.5	60
35	Long-Term Duloxetine Treatment Normalizes Altered Brain-Derived Neurotrophic Factor Expression in Serotonin Transporter Knockout Rats through the Modulation of Specific Neurotrophin Isoforms. Molecular Pharmacology, 2010, 77, 846-853.	1.0	56
36	From Healthy Aging to Frailty: In Search of the Underlying Mechanisms. Current Medicinal Chemistry, 2019, 26, 3685-3701.	1.2	55

3

#	Article	IF	CITATIONS
37	Depression-prone mice with reduced glucocorticoid receptor expression display an altered stress-dependent regulation of brain-derived neurotrophic factor and activity-regulated cytoskeleton-associated protein. Journal of Psychopharmacology, 2010, 24, 595-603.	2.0	49
38	Stimulatory role of dopamine on fibroblast growth factor-2 expression in rat striatum. Journal of Neurochemistry, 2001, 76, 990-997.	2.1	48
39	Lurasidone Exerts Antidepressant Properties in the Chronic Mild Stress Model through the Regulation of Synaptic and Neuroplastic Mechanisms in the Rat Prefrontal Cortex. International Journal of Neuropsychopharmacology, 2015, 18, .	1.0	48
40	A multi-element psychosocial intervention for early psychosis (GET UP PIANO TRIAL) conducted in a catchment area of 10 million inhabitants: study protocol for a pragmatic cluster randomized controlled trial. Trials, 2012, 13, 73.	0.7	47
41	Emerging role of the FGF system in psychiatric disorders. Trends in Pharmacological Sciences, 2005, 26, 228-231.	4.0	46
42	Selective modulation of fibroblast growth factor-2 expression in the rat brain by the atypical antipsychotic clozapine. Neuropharmacology, 1999, 38, 1075-1082.	2.0	44
43	Cyclic AMP-dependent regulation of fibroblast growth factor-2 messenger RNA levels in rat cortical astrocytes: comparison with fibroblast growth factor-1 and ciliary neurotrophic factor. Molecular Pharmacology, 1996, 49, 699-706.	1.0	44
44	Synergistic mechanisms involved in the antidepressant effects of agomelatine. European Neuropsychopharmacology, 2012, 22, S482-S486.	0.3	42
45	International Union of Basic and Clinical Pharmacology CIV: The Neurobiology of Treatment-resistant Depression: From Antidepressant Classifications to Novel Pharmacological Targets. Pharmacological Reviews, 2018, 70, 475-504.	7.1	42
46	Oxidation-reduction mechanisms in psychiatric disorders: A novel target for pharmacological intervention. , 2020, 210, 107520.		39
47	Antistress properties of antidepressant drugs and their clinical implications. , 2011, 132, 39-56.		38
48	Chronic mild stress-induced alterations of clock gene expression in rat prefrontal cortex: modulatory effects of prolonged lurasidone treatment. Pharmacological Research, 2016, 104, 140-150.	3.1	38
49	Chronic Stress Exposure Reduces Parvalbumin Expression in the Rat Hippocampus through an Imbalance of Redox Mechanisms: Restorative Effect of the Antipsychotic Lurasidone. International Journal of Neuropsychopharmacology, 2018, 21, 883-893.	1.0	37
50	Neurotrophic Factors in Neurodegenerative Disorders. CNS Drugs, 2008, 22, 1005-1019.	2.7	35
51	Common Protective Strategies in Neurodegenerative Disease: Focusing on Risk Factors to Target the Cellular Redox System. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-18.	1.9	34
52	Synaptic alterations associated with depression and schizophrenia: potential as a therapeutic target. Expert Opinion on Therapeutic Targets, 2016, 20, 1195-1207.	1.5	33
53	Different patterns of induction of FGF-2, FGF-1 and BDNF mRNAs during kindling epileptogenesis in the rat. European Journal of Neuroscience, 1998, 10, 955-963.	1.2	32
54	β-Arrestin 2 is required for the induction and strengthening of integrin-mediated leukocyte adhesion during CXCR2-driven extravasation. Blood, 2009, 114, 1073-1082.	0.6	29

#	Article	IF	CITATIONS
55	Autophagy in the Regulation of Tissue Differentiation and Homeostasis. Frontiers in Cell and Developmental Biology, 2020, 8, 602901.	1.8	29
56	Basal and stress-induced modulation of activity-regulated cytoskeletal associated protein (Arc) in the rat brain following duloxetine treatment. Psychopharmacology, 2008, 201, 285-292.	1.5	28
57	Prokineticin 2 promotes and sustains neuroinflammation in vincristine treated mice: Focus on pain and emotional like behavior. Brain, Behavior, and Immunity, 2019, 82, 422-431.	2.0	28
58	Differential regulation of FGF-2 and FGFR-1 in rat cortical astrocytes by dexamethasone and isoproterenol. Molecular Brain Research, 1998, 57, 38-45.	2.5	22
59	Olive oil-enriched diet reduces brain oxidative damages and ameliorates neurotrophic factor gene expression in different life stages of rats. Journal of Nutritional Biochemistry, 2015, 26, 1200-1207.	1.9	22
60	Differential Neuroinflammatory Response in Male and Female Mice: A Role for BDNF. Frontiers in Molecular Neuroscience, 2019, 12, 166.	1.4	21
61	Altered expression and modulation of activity-regulated cytoskeletal associated protein (Arc) in serotonin transporter knockout rats. European Neuropsychopharmacology, 2009, 19, 898-904.	0.3	20
62	L-Deprenyl potentiates cAMP-induced elevation of FGF-2 mRNA levels in rat cortical astrocytes. NeuroReport, 1997, 8, 2165-2168.	0.6	19
63	Acute and chronic changes in K+-induced depolarization alter NMDA and nNOS gene expression in cultured cerebellar granule cells. Molecular Brain Research, 1996, 40, 171-174.	2.5	18
64	Altered inflammatory responsiveness in serotonin transporter mutant rats. Journal of Neuroinflammation, 2013, 10, 116.	3.1	18
65	Chronic Mild Stress Modulates Activity-Dependent Transcription of BDNF in Rat Hippocampal Slices. Neural Plasticity, 2016, 2016, 1-11.	1.0	17
66	Chronic Restraint Stress Inhibits the Response to a Second Hit in Adult Male Rats: A Role for BDNF Signaling. International Journal of Molecular Sciences, 2020, 21, 6261.	1.8	16
67	Reduced activation of intracellular signaling pathways in rat prefrontal cortex after chronic phencyclidine administration. Pharmacological Research, 2008, 57, 296-302.	3.1	14
68	PQM130, a Novel Feruloyl–Donepezil Hybrid Compound, Effectively Ameliorates the Cognitive Impairments and Pathology in a Mouse Model of Alzheimer's Disease. Frontiers in Pharmacology, 2019, 10, 658.	1.6	14
69	Genome-wide analysis of LPS-induced inflammatory response in the rat ventral hippocampus: Modulatory activity of the antidepressant agomelatine. World Journal of Biological Psychiatry, 2018, 19, 390-401.	1.3	13
70	BACHD rats expressing full-length mutant huntingtin exhibit differences in social behavior compared to wild-type littermates. PLoS ONE, 2018, 13, e0192289.	1.1	13
71	The Long-Term Impact of Early Adversities on Psychiatric Disorders: Focus on Neuronal Plasticity. Current Pharmaceutical Design, 2015, 21, 1388-1395.	0.9	13
72	The GIT–PIX complexes regulate the chemotactic response of rat basophilic leukaemia cells. Biology of the Cell, 2010, 102, 231-244.	0.7	11

#	Article	IF	CITATIONS
73	Chronic treatment with the antipsychotic drug blonanserin modulates the responsiveness to acute stress with anatomical selectivity. Psychopharmacology, 2020, 237, 1783-1793.	1.5	11
74	Prenatal Stress Impairs Spinal Cord Oligodendrocyte Maturation via BDNF Signaling in the Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis. Cellular and Molecular Neurobiology, 2022, 42, 1225-1240.	1.7	7
75	Behavioral and molecular effects of the antipsychotic drug blonanserin in the chronic mild stress model. Pharmacological Research, 2021, 163, 105330.	3.1	7
76	Gene expression profiling as functional readout of rodent models for psychiatric disorders. Cell and Tissue Research, 2013, 354, 51-60.	1.5	5
77	Calcium-dependent modulation of FGF-2 expression in cultured cerebellar granule neurons. NeuroReport, 2000, 11, 3615-3619.	0.6	4
78	Nitric oxide synthase inhibition reverts muscarinic receptor down-regulation induced by pilocarpine- and kainic acid-evoked seizures in rat fronto-parietal cortex. Epilepsy Research, 2014, 108, 11-19.	0.8	3
79	Altered responsiveness of the antioxidant system in chronically stressed animals: modulation by chronic lurasidone treatment. Psychopharmacology, 2022, 239, 2547-2557.	1.5	3
80	Bioavailability of curcumin in the rat frontal lobe and hippocampus after repeated administration of MERIVA®. Planta Medica, 2016, 81, S1-S381.	0.7	1
81	S.20.03 Isoform expression and intracellular trafficking of BDNF following stress and antidepressant drug treatment. European Neuropsychopharmacology, 2009, 19, S205.	0.3	0
82	P.1.001 Chronic mild stress modulates the transcription of BDNF isoforms with brain region specificity: influence of antidepressant treatment. European Neuropsychopharmacology, 2011, 21, S2-S3.	0.3	0
83	Poster #S22 THE ANTI-ANHEDONIC PROPERTIES OF LURASIDONE IN THE CHRONIC MILD STRESS MODEL ARE ASSOCIATED WITH SYNAPTIC AND NEUROPLASTIC CHANGES IN THE RAT PREFRONTAL CORTEX. Schizophrenia Research, 2014, 153, S95-S96.	1.1	0
84	Investigating stress resilience and susceptibility: impact of lipopolysaccharide on the rat brain. European Neuropsychopharmacology, 2017, 27, S38-S39.	0.3	0
85	T221. LURASIDONE DISPLAYS ANTIDEPRESSANT AND PRO-COGNITIVE EFFECTS IN THE CHRONIC MILD STRESS MODEL: A ROLE FOR REDOX MECHANISMS AND PARVALBUMIN EXPRESSION. Schizophrenia Bulletin, 2018, 44, S202-S202.	2.3	0
86	P.1.13 Neuroplastic changes following chronic treatment with antipsychotic blonanserin in rats: Implications for schizophrenia. European Neuropsychopharmacology, 2019, 29, S642-S643.	0.3	0
87	P.404 Neuroplastic changes following chronic treatment with antipsychotic blonanserin in rats: Implications for schizophrenia. European Neuropsychopharmacology, 2019, 29, S286-S287.	0.3	0
88	Chronic Lurasidone Treatment in Stress-Based Models of Psychiatric Disorders: From Prevention to Functional Normalization. Biological Psychiatry, 2020, 87, S150-S151.	0.7	0
89	Stress e depressione: Meccanismi eziopatologici e modulazione farmacologica. , 2012, , 301-314.		0