
Irena Majerz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/502004/publications.pdf Version: 2024-02-01

IDENA MAIEDZ

#	Article	IF	CITATIONS
1	Theoretical Study of the Geometry of Dibenzoazepine Analogues. Molecules, 2022, 27, 790.	3.8	Ο
2	Analysis of Weak Interactions in Crystals of Fenamic Acids–Ethacridine Complexes. Crystal Growth and Design, 2022, 22, 1554-1570.	3.0	0
3	Theoretical Studies on the Structure and Intramolecular Interactions of Fagopyrins—Natural Photosensitizers of Fagopyrum. Molecules, 2022, 27, 3689.	3.8	6
4	Effect of Substitution of Hydrogen Atoms in the Molecules of Anthrone and Anthraquinone. Molecules, 2021, 26, 502.	3.8	4
5	In Silico Studies on Sennidines—Natural Dianthrones from Senna. Biology, 2021, 10, 468.	2.8	2
6	The Crystal Structure and Intermolecular Interactions in Fenamic Acids–Acridine Complexes. Molecules, 2021, 26, 2956.	3.8	4
7	Electrochemical Behaviour of Selected Fenamate NSAIDs at PNAANI Modified Glassy Carbon Electrode. Journal of the Electrochemical Society, 2021, 168, 106504.	2.9	1
8	Novel Coordination Mode in the Potassium Mefenamate Trihydrate Polymeric Structure. Symmetry, 2021, 13, 1761.	2.2	0
9	Substituent effect on inter-ring interaction in paracyclophanes. Molecular Diversity, 2020, 24, 11-20.	3.9	8
10	Geometry and electron density of phenothazines. Journal of Molecular Structure, 2020, 1200, 127095.	3.6	7
11	What Is the Main Feature Distinguishing the Through-Space Interactions in Cyclophanes from Their Aliphatic Analogues?. ACS Omega, 2020, 5, 22314-22324.	3.5	2
12	Aromaticity and Electron Density of Hypericin. Journal of Natural Products, 2019, 82, 2106-2115.	3.0	7
13	The Na—O bond in sodium fenamate. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 766-774.	1.1	4
14	Aromaticity of benzene derivatives: an exploration of the Cambridge Structural Database. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2018, 74, 148-151.	1.1	4
15	Weak interactions in furan dimers. Journal of Computer-Aided Molecular Design, 2018, 32, 1247-1258.	2.9	5
16	Aromaticity of <i>peri</i> - and <i>para</i> -Substituted Naphthalene-1-carbaldehyde. Comparison with 1-Nitronaphthalene. Journal of Physical Chemistry A, 2017, 121, 2627-2635.	2.5	2
17	Proton Transfer Influence on Geometry and Electron Density in Benzoic Acid–Pyridine Complexes. Helvetica Chimica Acta, 2016, 99, 286-295.	1.6	3
18	Aromaticity and Through-Space Interaction between Aromatic Rings in [2.2]Paracyclophanes. Journal of Physical Chemistry A, 2016, 120, 8138-8147.	2.5	18

Irena Majerz

#	Article	IF	CITATIONS
19	The Crystal Structure and Behavior of Fenamic Acid-Acridine Complex Under High Pressure. Journal of Pharmaceutical Sciences, 2016, 105, 3487-3495.	3.3	3
20	Flexible ferroelectric organic crystals. Nature Communications, 2016, 7, 13108.	12.8	182
21	Intermolecular OHN hydrogen bond with a proton moving in 3-methylpyridinium 2,6-dichloro-4-nitrophenolate. RSC Advances, 2015, 5, 95576-95584.	3.6	7
22	Proton vibrations in 2,4,6-trimethylpyridinium pentachlorophenolate. Chemical Physics Letters, 2014, 608, 289-294.	2.6	0
23	Substituents and Environment Influences on Aromaticity of <i>peri</i> and <i>para</i> -Substituted Naphthalenes. Journal of Physical Chemistry A, 2014, 118, 7118-7129.	2.5	4
24	Weak hydrogen and dihydrogen bonds instead of strong N–Hâ∢O bonds of a tricyclic [1,2,4,5]-tetrazine derivative. Single-crystal X-ray diffraction, theoretical calculations and Hirshfeld surface analysis. CrystEngComm, 2014, 16, 7638-7648.	2.6	16
25	Proton-transfer paths in CHâ⊄O hydrogen bonds. RSC Advances, 2012, 2, 2545.	3.6	4
26	Directionality of Inter- and Intramolecular OHO Hydrogen Bonds: DFT Study Followed by AIM and NBO Analysis. Journal of Physical Chemistry A, 2012, 116, 7992-8000.	2.5	25
27	Aromaticity of Overcrowded Nitroanilines. Journal of Physical Chemistry A, 2012, 116, 5629-5636.	2.5	8
28	Peculiarities of quasi-aromatic hydrogen bonding. RSC Advances, 2012, 2, 8135.	3.6	30
29	Mechanism of proton transfer in the strong OHN intermolecular hydrogen bond. RSC Advances, 2011, 1, 219.	3.6	15
30	The influence of potassium cation on a strong OHO hydrogen bond. Organic and Biomolecular Chemistry, 2011, 9, 1466.	2.8	6
31	Geometric Aspects of Aromaticity: Interrelations between Intramolecular Hydrogen Bonds, Steric Effects and Ï€â€Electron Delocalisation in Nitroanilines. European Journal of Organic Chemistry, 2011, 2011, 280-286.	2.4	9
32	The influence of the OHO angle on the proton valency in inter- and intra-molecular hydrogen bonds. Journal of Molecular Structure, 2010, 968, 48-51.	3.6	6
33	Analysis of potential energy curve for proton motion in intermolecular hydrogen bond. Chemical Physics Letters, 2010, 484, 134-138.	2.6	1
34	Comparison of the proton-transfer paths in hydrogen bonds from theoretical potential-energy surfaces and the concept of conservation of bond order III. O–H–O hydrogen bonds. Physical Chemistry Chemical Physics, 2010, 12, 5462.	2.8	14
35	DFT Studies of the Structure and Vibrational Spectra of NH Tautomers of <i>trans</i> - <i>N,N</i> ′-bis–Salicylidene-1′,2′-cyclohexanediamines. Spectroscopy Letters, 2009, 42, 246-257.	1.0	2
36	Changes of electron density in the OHN hydrogen bond upon proton transfer in complexes of phenols with trimethylamine: DFT study. Journal of Physical Organic Chemistry, 2008, 21, 867-875.	1.9	8

Irena Majerz

#	Article	IF	CITATIONS
37	Does the fiveâ€member hydrogen bond ring in quinoline carboxamides exist?. Journal of Physical Organic Chemistry, 2008, 21, 876-880.	1.9	8
38	Temperature-Dependent Single-Crystal Neutron Diffraction Study of the Strong OHN Hydrogen Bond in Pyridinium 2,4-Dinitrobenzoate. Journal of Physical Chemistry A, 2008, 112, 9801-9806.	2.5	14
39	The shape of the potential energy curves for NHN+ hydrogen bonds and the influence of non-linearity. Physical Chemistry Chemical Physics, 2008, 10, 3043.	2.8	16
40	The strong OHO hydrogen bond. How much covalency?. Molecular Physics, 2007, 105, 2305-2314.	1.7	7
41	The influence of hydrogen bond formation and the proton transfer on the structure of complexes of phenols with N-methylmorpholine. Journal of Molecular Structure, 2007, 831, 106-113.	3.6	20
42	Comparison of the proton-transfer path in hydrogen bonds from theoretical potential-energy surfaces and the concept of conservation of bond order. II. (N—HN) ⁺ hydrogen bonds. Acta Crystallographica Section B: Structural Science, 2007, 63, 650-662.	1.8	16
43	Structural modifications resulting from proton transfer in complexes of phenols with pyridine. Journal of Physical Organic Chemistry, 2005, 18, 833-843.	1.9	7
44	Anomalous temperature effect on the hydrogen bond strength and phase transition in 2,4,6-trimethylpyridinium pentachlorophenolate Journal of Molecular Structure, 2004, 694, 45-53.	3.6	1
45	Structural consequences of proton transfer in some selected complexes of phenol derivatives with trimethylamine. Chemical Physics Letters, 2004, 398, 130-139.	2.6	12
46	First Oâ^'Hâ^'N Hydrogen Bond with a Centered Proton Obtained by Thermally Induced Proton Migration. Angewandte Chemie - International Edition, 2001, 40, 2651-2654.	13.8	218
47	Neutron diffraction study of a very short O–H‥N hydrogen bond: crystalline adduct of 2-methylpyridine and pentachlorophenol. Chemical Communications, 2000, , 1231-1232.	4.1	41
48	Structure and IR spectroscopic behaviour of 2,7-dichloro-1,8-bis(dimethylamino)naphthalene and its protonated form. Journal of Physical Organic Chemistry, 1999, 12, 895-900.	1.9	25