
Jennifer Noro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5019831/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protective Effect of Saccharides on Freeze-Dried Liposomes Encapsulating Drugs. Frontiers in Bioengineering and Biotechnology, 2019, 7, 424.	2.0	45
2	Antimicrobial coating of textiles by laccase in situ polymerization of catechol and p-phenylenediamine. Reactive and Functional Polymers, 2019, 136, 25-33.	2.0	27
3	Bio-coloration of bacterial cellulose assisted by immobilized laccase. AMB Express, 2018, 8, 19.	1.4	26
4	The effect of high-energy environments on the structure of laccase-polymerized poly(catechol). Ultrasonics Sonochemistry, 2018, 48, 275-280.	3.8	23
5	Ultrasound-assisted lipase catalyzed hydrolysis of aspirin methyl ester. Ultrasonics Sonochemistry, 2018, 40, 587-593.	3.8	22
6	Zein impart hydrophobic and antimicrobial properties to cotton textiles. Reactive and Functional Polymers, 2020, 154, 104664.	2.0	22
7	Ultrasound-Assisted Encapsulation of Sacha Inchi (Plukenetia volubilis Linneo.) Oil in Alginate-Chitosan Nanoparticles. Polymers, 2019, 11, 1245.	2.0	21
8	Quantification of drugs encapsulated in liposomes by 1H NMR. Colloids and Surfaces B: Biointerfaces, 2019, 179, 414-420.	2.5	21
9	Increased Encapsulation Efficiency of Methotrexate in Liposomes for Rheumatoid Arthritis Therapy. Biomedicines, 2020, 8, 630.	1.4	21
10	PEGylation Greatly Enhances Laccase Polymerase Activity. ChemCatChem, 2017, 9, 3888-3894.	1.8	20
11	Green Extraction of Cork Bioactive Compounds Using Natural Deep Eutectic Mixtures. ACS Sustainable Chemistry and Engineering, 2022, 10, 7974-7989.	3.2	20
12	Conductive Cotton by In Situ Laccase-Polymerization of Aniline. Polymers, 2018, 10, 1023.	2.0	19
13	Exploring PEGylated and immobilized laccases for catechol polymerization. AMB Express, 2018, 8, 134.	1.4	19
14	Substrate hydrophobicity and enzyme modifiers play a major role in the activity of lipase from <i>Thermomyces lanuginosus</i> . Catalysis Science and Technology, 2020, 10, 5913-5924.	2.1	19
15	Conductive bacterial cellulose by in situ laccase polymerization of aniline. PLoS ONE, 2019, 14, e0214546.	1.1	18
16	Enzymatic polymerization of catechol under high-pressure homogenization for the green coloration of textiles. Journal of Cleaner Production, 2018, 202, 792-798.	4.6	17
17	Ultrasound-assisted biosynthesis of novel methotrexate-conjugates. Ultrasonics Sonochemistry, 2018, 48, 51-56.	3.8	16
18	Jute hydrophobization via laccase-catalyzed grafting of fluorophenol and fluoroamine. RSC Advances, 2016. 6. 90427-90434.	1.7	12

Jennifer Noro

#	Article	IF	CITATIONS
19	"In-situ―lipase-catalyzed cotton coating with polyesters from ethylene glycol and glycerol. Process Biochemistry, 2018, 66, 82-88.	1.8	12
20	Absence of Albumin Improves <i>in Vitro</i> Cellular Uptake and Disruption of Poloxamer 407-Based Nanoparticles inside Cancer Cells. Molecular Pharmaceutics, 2018, 15, 527-535.	2.3	12
21	Internalization of Methotrexate Conjugates by Folate Receptor-α. Biochemistry, 2018, 57, 6780-6786.	1.2	12
22	Coloured and low conductive fabrics by in situ laccase-catalysed polymerization. Process Biochemistry, 2019, 77, 77-84.	1.8	12
23	Poloxamer 407 based-nanoparticles for controlled release of methotrexate. International Journal of Pharmaceutics, 2020, 575, 118924.	2.6	12
24	Catalytic Activation of Esterases by PEGylation for Polyester Synthesis. ChemCatChem, 2019, 11, 2490-2499.	1.8	11
25	Tandem Cyclization of a Bispyridinium Chloride: Facile Synthesis of Substituted Indolizines. Synlett, 2013, 24, 2255-2258.	1.0	10
26	Carboxymethyl Cellulose (CMC) as a Template for Laccase-Assisted Oxidation of Aniline. Frontiers in Bioengineering and Biotechnology, 2020, 8, 438.	2.0	10
27	Polymers from Bamboo Extracts Produced by Laccase. Polymers, 2018, 10, 1141.	2.0	9
28	Effect of Additives on the in situ Laccase-Catalyzed Polymerization of Aniline Onto Bacterial Cellulose. Frontiers in Bioengineering and Biotechnology, 2019, 7, 264.	2.0	9
29	Grafting of Poly(tyrosine) by Laccase Improves the Tensile Strength and Anti-shrinkage of Wool. Journal of Natural Fibers, 2022, 19, 10979-10991.	1.7	7
30	PTS micelles for the delivery of hydrophobic methotrexate. International Journal of Pharmaceutics, 2019, 566, 282-290.	2.6	6
31	Total facial selectivity of a <scp>d</scp> -erythrosyl aromatic imine in [4ï€ + 2ï€] cycloadditions; synthesis of 2-alkylpolyol 1,2,3,4-tetrahydroquinolines. Organic and Biomolecular Chemistry, 2016, 14, 2930-2937.	1.5	5
32	Oil-based cyclo-oligosaccharide nanodevices for drug encapsulation. Colloids and Surfaces B: Biointerfaces, 2017, 159, 259-267.	2.5	5
33	Chemical modification of lipases: A powerful tool for activity improvement. Biotechnology Journal, 2022, 17, e2100523.	1.8	5
34	Strategies for the synthesis of fluorinated polyesters. RSC Advances, 2019, 9, 1799-1806.	1.7	4
35	α-Chymotrypsin catalyses the synthesis of methotrexate oligomers. Process Biochemistry, 2020, 98, 193-201.	1.8	4
36	Chemically Modified Lipase from <i>Thermomyces lanuginosus</i> with Enhanced Esterification and Transesterification Activities. ChemCatChem, 2021, 13, 4524-4531.	1.8	4

Jennifer Noro

#	Article	IF	CITATIONS
37	Total Stereoselective Michael Addition of <i>N</i> and <i>S</i> Nucleophiles to a <scp>d</scp> -Erythrosyl 1,5-Lactone Derivative. Experimental and Theoretical Studies Devoted to the Synthesis of 2,6-Dideoxy-4-functionalized- <scp>d</scp> - <i>ribono</i> hexono-1,4-lactone. Journal of Organic Chemistry, 2018, 83, 8011-8019.	1.7	3
38	Changing the shape of wool yarns via laccase-mediated grafting of tyrosine. Journal of Biotechnology, 2021, 339, 73-80.	1.9	3
39	The comfort properties of cosmeto-textiles functionalized with protein-based nanoemulsions encapsulating Vitamin-E. Journal of Natural Fibers, 0, , 1-13.	1.7	2
40	A Short Synthesis of (2S,3S,4R)-Dihydroxyhomoprolines from d-Erythrose-Derived 5,6-Dihydro-2H-pyran-2-one. Synthesis, 2019, 51, 2720-2728.	1.2	0