Samira Saadoun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5019664/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acute, severe traumatic spinal cord injury: improving urinary bladder function by optimizing spinal cord perfusion. Journal of Neurosurgery: Spine, 2022, 36, 145-152.	0.9	5
2	Monitoring Spinal Cord Tissue Oxygen in Patients With Acute, Severe Traumatic Spinal Cord Injuries. Critical Care Medicine, 2022, 50, e477-e486.	0.4	10
3	Acute Spinal Cord Injury: Correlations and Causal Relations Between Intraspinal Pressure, Spinal Cord Perfusion Pressure, Lactate-to-Pyruvate Ratio, and Limb Power. Neurocritical Care, 2021, 34, 121-129.	1.2	20
4	Acute Traumatic Spinal Cord Injury in Humans, Dogs, and Other Mammals: The Under-appreciated Role of the Dura. Frontiers in Neurology, 2021, 12, 629445.	1.1	6
5	Spinal Cord Perfusion Pressure Correlates with Anal Sphincter Function in a Cohort of Patients with Acute, Severe Traumatic Spinal Cord Injuries. Neurocritical Care, 2021, 35, 794-805.	1.2	11
6	Acute, Severe Traumatic Spinal Cord Injury. Neurosurgery Clinics of North America, 2021, 32, 365-376.	0.8	17
7	Letter to the Editor. The INSPIRE studies for spinal cord injury. Journal of Neurosurgery: Spine, 2021, 35, 684-685.	0.9	1
8	Targeted Perfusion Therapy in Spinal Cord Trauma. Neurotherapeutics, 2020, 17, 511-521.	2.1	39
9	Heterogeneous effect of increasing spinal cord perfusion pressure on sensory evoked potentials recorded from acutely injured human spinal cord. Journal of Critical Care, 2020, 56, 145-151.	1.0	6
10	Effects of local hypothermia–rewarming on physiology, metabolism and inflammation of acutely injured human spinal cord. Scientific Reports, 2020, 10, 8125.	1.6	12
11	Acute Spinal Cord Injury: Monitoring Lumbar Cerebrospinal Fluid Provides Limited Information about the Injury Site. Journal of Neurotrauma, 2020, 37, 1156-1164.	1.7	22
12	Predictors of Intraspinal Pressure and Optimal Cord Perfusion Pressure After Traumatic Spinal Cord Injury. Neurocritical Care, 2019, 30, 421-428.	1.2	28
13	Spinal Cord Blood Flow in Patients with Acute Spinal Cord Injuries. Journal of Neurotrauma, 2019, 36, 919-929.	1.7	53
14	Neuromyelitis Optica Spectrum Disorder. Contemporary Clinical Neuroscience, 2019, , 523-541.	0.3	1
15	Markedly Deranged Injury Site Metabolism and Impaired Functional Recovery in Acute Spinal Cord Injury Patients With Fever. Critical Care Medicine, 2018, 46, 1150-1157.	0.4	17
16	Non-linear Dynamical Analysis of Intraspinal Pressure Signal Predicts Outcome After Spinal Cord Injury. Frontiers in Neurology, 2018, 9, 493.	1.1	17
17	Visibility Graph Analysis of Intraspinal Pressure Signal Predicts Functional Outcome in Spinal Cord Injured Patients. Journal of Neurotrauma, 2018, 35, 2947-2956.	1.7	13
18	Intraspinal pressure and spinal cord perfusion pressure predict neurological outcome after traumatic spinal cord injury. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 452-453.	0.9	66

SAMIRA SAADOUN

#	Article	IF	CITATIONS
19	Continuous Monitoring and Visualization of Optimum Spinal Cord Perfusion Pressure in Patients with Acute Cord Injury. Journal of Neurotrauma, 2017, 34, 2941-2949.	1.7	44
20	Measurement of Intraspinal Pressure After Spinal Cord Injury: Technical Note from the Injured Spinal Cord Pressure Evaluation Study. Acta Neurochirurgica Supplementum, 2016, 122, 323-328.	0.5	24
21	The dura causes spinal cord compression after spinal cord injury. British Journal of Neurosurgery, 2016, 30, 582-584.	0.4	37
22	Safety profile and probe placement accuracy of intraspinal pressure monitoring for traumatic spinal cord injury: Injured Spinal Cord Pressure Evaluation study. Journal of Neurosurgery: Spine, 2016, 25, 398-405.	0.9	45
23	Metabolic profile of injured human spinal cord determined using surface microdialysis. Journal of Neurochemistry, 2016, 139, 700-705.	2.1	29
24	Spinal cord injury: is monitoring from the injury site the future?. Critical Care, 2016, 20, 308.	2.5	50
25	Microdialysis to Optimize Cord Perfusion and Drug Delivery in Spinal Cord Injury. Annals of Neurology, 2016, 80, 522-531.	2.8	55
26	Expansion Duroplasty Improves Intraspinal Pressure, Spinal Cord Perfusion Pressure, and Vascular Pressure Reactivity Index in Patients with Traumatic Spinal Cord Injury: Injured Spinal Cord Pressure Evaluation Study. Journal of Neurotrauma, 2015, 32, 865-874.	1.7	116
27	Role of membrane complement regulators in neuromyelitis optica. Multiple Sclerosis Journal, 2015, 21, 1644-1654.	1.4	50
28	Intraspinal pressure and spinal cord perfusion pressure after spinal cord injury: an observational study. Journal of Neurosurgery: Spine, 2015, 23, 763-771.	0.9	58
29	Key roles of aquaporins in tumor biology. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2576-2583.	1.4	182
30	Monitoring of Spinal Cord Perfusion Pressure in Acute Spinal Cord Injury. Critical Care Medicine, 2014, 42, 646-655.	0.4	140
31	Neuromyelitis optica MOG-IgG causes reversible lesions in mouse brain. Acta Neuropathologica Communications, 2014, 2, 35.	2.4	115
32	Neuromyelitis Optica IgG Causes Placental Inflammation and Fetal Death. Journal of Immunology, 2013, 191, 2999-3005.	0.4	90
33	Detrimental role of granulocyte-colony stimulating factor in neuromyelitis optica: clinical case and histological evidence. Multiple Sclerosis Journal, 2012, 18, 1801-1803.	1.4	36
34	Glioblastoma blood flow measured with stable xenon CT indicates tumor necrosis, vascularity, and brain invasion. Neuro-Oncology, 2012, 14, 641-648.	0.6	2
35	Paucity of natural killer and cytotoxic T cells in human neuromyelitis optica lesions. NeuroReport, 2012, 23, 1044-1047.	0.6	30
36	Smallâ€molecule inhibitors of NMOâ€lgG binding to aquaporinâ€4 reduce astrocyte cytotoxicity in neuromyelitis optica. FASEB Journal, 2012, 26, 2197-2208.	0.2	76

SAMIRA SAADOUN

#	Article	IF	CITATIONS
37	Anti–Aquaporinâ€4 monoclonal antibody blocker therapy for neuromyelitis optica. Annals of Neurology, 2012, 71, 314-322.	2.8	232
38	Neutrophil protease inhibition reduces neuromyelitis optica–immunoglobulin G–induced damage in mouse brain. Annals of Neurology, 2012, 71, 323-333.	2.8	153
39	Neuromyelitis optica IgC and natural killer cells produce NMO lesions in mice without myelin loss. Acta Neuropathologica, 2012, 123, 861-872.	3.9	97
40	Dangers of bone graft substitutes: lessons from using GeneX. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, e3-e3.	0.9	18
41	T cell deficiency does not reduce lesions in mice produced by intracerebral injection of NMO-lgG and complement. Journal of Neuroimmunology, 2011, 235, 27-32.	1.1	31
42	Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. Brain, 2010, 133, 349-361.	3.7	480
43	Water movements in the brain: role of aquaporins. Trends in Neurosciences, 2008, 31, 37-43.	4.2	300
44	Greatly improved neurological outcome after spinal cord compression injury in AQP4-deficient mice. Brain, 2008, 131, 1087-1098.	3.7	186
45	Serum α2-HS Glycoprotein Predicts Survival in Patients with Glioblastoma. Clinical Chemistry, 2008, 54, 713-722.	1.5	69
46	Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature, 2005, 434, 786-792.	13.7	665
47	Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. Journal of Cell Science, 2005, 118, 5691-5698.	1.2	422
48	A novel and accurate diagnostic test for human African trypanosomiasis. Lancet, The, 2004, 363, 1358-1363.	6.3	137
49	Endothelin stimulates nitric oxide-dependent cyclic GMP formation in rat cerebellar astroglia. NeuroReport, 1999, 10, 33-36.	0.6	17
50	Extracellular Acidification Modifies Ca2+Fluxes in Rat Brain Synaptosomes. Biochemical and Biophysical Research Communications, 1998, 242, 123-128.	1.0	9