
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/501892/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymers, 2013, 94, 154-169.	5.1	918
2	Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polymer Degradation and Stability, 2010, 95, 2126-2146.	2.7	823
3	Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydrate Polymers, 2012, 87, 1596-1605.	5.1	538
4	Multifunctional nanostructured PLA materials for packaging and tissue engineering. Progress in Polymer Science, 2013, 38, 1720-1747.	11.8	527
5	Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydrate Polymers, 2012, 90, 948-956.	5.1	420
6	Physical, structural and antimicrobial properties of poly vinyl alcohol–chitosan biodegradable films. Food Hydrocolloids, 2014, 35, 463-470.	5.6	393
7	Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging. Industrial Crops and Products, 2016, 94, 800-811.	2.5	307
8	Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends. Carbohydrate Polymers, 2015, 121, 265-275.	5.1	276
9	Multifunctional PLA–PHB/cellulose nanocrystal films: Processing, structural and thermal properties. Carbohydrate Polymers, 2014, 107, 16-24.	5.1	250
10	PLA-PHB/cellulose based films: Mechanical, barrier and disintegration properties. Polymer Degradation and Stability, 2014, 107, 139-149.	2.7	243
11	Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles. Carbohydrate Polymers, 2018, 181, 275-284.	5.1	228
12	Valorization of Acid Isolated High Yield Lignin Nanoparticles as Innovative Antioxidant/Antimicrobial Organic Materials. ACS Sustainable Chemistry and Engineering, 2018, 6, 3502-3514.	3.2	214
13	Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging. European Polymer Journal, 2016, 79, 1-12.	2.6	212
14	Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polymer Degradation and Stability, 2012, 97, 2027-2036.	2.7	193
15	Combined effects of cellulose nanocrystals and silver nanoparticles on the barrier and migration properties of PLA nano-biocomposites. Journal of Food Engineering, 2013, 118, 117-124.	2.7	192
16	Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Industrial Crops and Products, 2016, 93, 276-289.	2.5	186
17	Effects of chitosan on the physicochemical and antimicrobial properties of PLA films. Journal of Food Engineering, 2013, 119, 236-243.	2.7	176
18	Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: Part L Carbohydrate Polymers, 2013, 97, 825-836	5.1	169

ELENA FORTUNATI

#	Article	IF	CITATIONS
19	Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. EXPRESS Polymer Letters, 2015, 9, 583-596.	1.1	168
20	PLLA-grafted cellulose nanocrystals: Role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohydrate Polymers, 2016, 142, 105-113.	5.1	167
21	Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: Innovative reuse of coastal plant. Industrial Crops and Products, 2015, 67, 439-447.	2.5	165
22	Nano-biocomposite films with modified cellulose nanocrystals and synthesized silver nanoparticles. Carbohydrate Polymers, 2014, 101, 1122-1133.	5.1	161
23	Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films. International Journal of Biological Macromolecules, 2016, 89, 360-368.	3.6	161
24	Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. European Polymer Journal, 2014, 56, 77-91.	2.6	159
25	Properties and ageing behaviour of pea starch films as affected by blend with poly(vinyl alcohol). Food Hydrocolloids, 2015, 48, 84-93.	5.6	156
26	Effect of processing conditions and lignin content on thermal, mechanical and degradative behavior of lignin nanoparticles/polylactic (acid) bionanocomposites prepared by melt extrusion and solvent casting. European Polymer Journal, 2015, 71, 126-139.	2.6	150
27	The Interaction of Bacteria with Engineered Nanostructured Polymeric Materials: A Review. Scientific World Journal, The, 2014, 2014, 1-18.	0.8	141
28	Development and thermal behaviour of ternary PLA matrix composites. Polymer Degradation and Stability, 2010, 95, 2200-2206.	2.7	132
29	Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. Journal of Applied Polymer Science, 2013, 128, 3220-3230.	1.3	130
30	PVA bio-nanocomposites: A new take-off using cellulose nanocrystals and PLGA nanoparticles. Carbohydrate Polymers, 2014, 99, 47-58.	5.1	126
31	Synergistic Effect of Halloysite and Cellulose Nanocrystals on the Functional Properties of PVA Based Nanocomposites. ACS Sustainable Chemistry and Engineering, 2016, 4, 794-800.	3.2	120
32	Effect of silver nanoparticles and cellulose nanocrystals on electrospun poly(lactic) acid mats: Morphology, thermal properties and mechanical behavior. Carbohydrate Polymers, 2014, 103, 22-31.	5.1	114
33	Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. European Polymer Journal, 2017, 95, 56-70.	2.6	113
34	A novel method to prepare conductive nanocrystalline cellulose/graphene oxide composite films. Materials Letters, 2013, 105, 4-7.	1.3	110
35	Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites Part I. Processing and morphology. Carbohydrate Polymers, 2013, 96, 611-620.	5.1	104
36	Extraction of Cellulose Nanocrystals from Phormium tenax Fibres. Journal of Polymers and the Environment, 2013, 21, 319-328.	2.4	98

ELENA FORTUNATI

#	Article	IF	CITATIONS
37	Study of disintegrability in compost and enzymatic degradation of PLA and PLA nanocomposites reinforced with cellulose nanocrystals extracted from Posidonia Oceanica. Polymer Degradation and Stability, 2015, 121, 105-115.	2.7	95
38	Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: Properties evaluation. Carbohydrate Polymers, 2013, 96, 621-627.	5.1	94
39	Revalorization of sunflower stalks as novel sources of cellulose nanofibrils and nanocrystals and their effect on wheat gluten bionanocomposite properties. Carbohydrate Polymers, 2016, 149, 357-368.	5.1	94
40	Simple citric acid-catalyzed surface esterification of cellulose nanocrystals. Carbohydrate Polymers, 2017, 157, 1358-1364.	5.1	91
41	Optimized extraction of cellulose nanocrystals from pristine and carded hemp fibres. Industrial Crops and Products, 2014, 56, 175-186.	2.5	90
42	Tuning Multi/Pluri-Potent Stem Cell Fate by Electrospun Poly(<scp>l</scp> -lactic) Tj ETQq0 0 0 rgBT /Overlock 10	Tf 50 542 2.6	. Td (acid)-Ca
43	New multifunctional poly(lactide acid) composites: Mechanical, antibacterial, and degradation properties. Journal of Applied Polymer Science, 2012, 124, 87-98.	1.3	87
44	Bio-based PLA_PHB plasticized blend films: Processing and structural characterization. LWT - Food Science and Technology, 2015, 64, 980-988.	2.5	87
45	Effect of lignin nanoparticles and masterbatch procedures on the final properties of glycidyl methacrylate- g -poly (lactic acid) films before and after accelerated UV weathering. Industrial Crops and Products, 2015, 77, 833-844.	2.5	84
46	Lignocellulosic nanostructures as reinforcement in extruded and solvent casted polymeric nanocomposites: an overview. European Polymer Journal, 2016, 80, 295-316.	2.6	80
47	Revalorization of barley straw and husk as precursors for cellulose nanocrystals extraction and their effect on PVA_CH nanocomposites. Industrial Crops and Products, 2016, 92, 201-217.	2.5	79
48	Cellulose nanocrystals from Actinidia deliciosa pruning residues combined with carvacrol in PVA_CH films with antioxidant/antimicrobial properties for packaging applications. International Journal of Biological Macromolecules, 2017, 104, 43-55.	3.6	77
49	Carbon nanotubes and silver nanoparticles for multifunctional conductive biopolymer composites. Carbon, 2011, 49, 2370-2379.	5.4	76
50	Use of alginate, chitosan and cellulose nanocrystals as emulsion stabilizers in the synthesis of biodegradable polymeric nanoparticles. Journal of Colloid and Interface Science, 2015, 445, 31-39.	5.0	75
51	Sustainable control strategies for plant protection and food packaging sectors by natural substances and novel nanotechnological approaches. Journal of the Science of Food and Agriculture, 2019, 99, 986-1000.	1.7	73
52	Functional Properties of Plasticized Bio-Based Poly(Lactic Acid)_Poly(Hydroxybutyrate) (PLA_PHB) Films for Active Food Packaging. Food and Bioprocess Technology, 2017, 10, 770-780.	2.6	72
53	Melt free radical grafting of glycidyl methacrylate (GMA) onto fully biodegradable poly(lactic) acid films: effect of cellulose nanocrystals and a masterbatch process. RSC Advances, 2015, 5, 32350-32357.	1.7	69

⁵⁴ Poly(N-vinylcaprolactam) nanocomposites containing nanocrystalline cellulose: a green approach to 2.4 64 thermoresponsive hydrogels. Cellulose, 2013, 20, 2393-2402.

#	Article	IF	CITATIONS
55	Metal Nanoparticles Embedded in Cellulose Nanocrystal Based Films: Material Properties and Post-use Analysis. Biomacromolecules, 2018, 19, 2618-2628.	2.6	62
56	Influence of thymol and silver nanoparticles on the degradation of poly(lactic acid) based nanocomposites: Thermal and morphological properties. Polymer Degradation and Stability, 2014, 108, 158-165.	2.7	60
57	Effect of cellulose nanocrystals on the properties of pea starch–poly(vinyl alcohol) blend films. Journal of Materials Science, 2015, 50, 6979-6992.	1.7	59
58	Nanostructured starch combined with hydroxytyrosol in poly(vinyl alcohol) based ternary films as active packaging system. Carbohydrate Polymers, 2018, 193, 239-248.	5.1	56
59	Processing Conditions, Thermal and Mechanical Responses of Stretchable Poly (Lactic Acid)/Poly (Butylene Succinate) Films. Materials, 2017, 10, 809.	1.3	55
60	Characterization and disintegrability under composting conditions of PLA-based nanocomposite films with thymol and silver nanoparticles. Polymer Degradation and Stability, 2016, 132, 2-10.	2.7	54
61	Ternary PVA nanocomposites containing cellulose nanocrystals from different sources and silver particles: Part II. Carbohydrate Polymers, 2013, 97, 837-848.	5.1	53
62	Combined Effects of Ag Nanoparticles and Oxygen Plasma Treatment on PLGA Morphological, Chemical, and Antibacterial Properties. Biomacromolecules, 2013, 14, 626-636.	2.6	52
63	PLGA/Ag nanocomposites: in vitro degradation study and silver ion release. Journal of Materials Science: Materials in Medicine, 2011, 22, 2735-2744.	1.7	50
64	Structure, gas-barrier properties and overall migration of poly(lactic acid) films coated with hydrogenated amorphous carbon layers. Carbon, 2013, 63, 274-282.	5.4	50
65	Okra (Abelmoschus esculentus) Fibre Based PLA Composites: Mechanical Behaviour and Biodegradation. Journal of Polymers and the Environment, 2013, 21, 726-737.	2.4	49
66	Keratins extracted from Merino wool and Brown Alpaca fibres as potential fillers for PLLA-based biocomposites. Journal of Materials Science, 2014, 49, 6257-6269.	1.7	48
67	PCM for improving polyurethane-based cool roof membranes durability. Solar Energy Materials and Solar Cells, 2017, 160, 34-42.	3.0	48
68	Development and characterization of bionanocomposites based on poly(3â€hydroxybutyrate) and cellulose nanocrystals for packaging applications. Polymer International, 2016, 65, 1046-1053.	1.6	47
69	Influence of organically modified clays on the properties and disintegrability in compost of solution cast poly(3-hydroxybutyrate) films. Polymer Degradation and Stability, 2014, 99, 127-135.	2.7	45
70	Biodegradation of <i>Phormium tenax</i> /poly(lactic acid) composites. Journal of Applied Polymer Science, 2012, 125, E562.	1.3	44
71	The role of nanocrystalline cellulose on the microstructure of foamed castor-oil polyurethane nanocomposites. Carbohydrate Polymers, 2015, 134, 110-118.	5.1	44
72	Effect of ethylene-co-vinyl acetate-glycidylmethacrylate and cellulose microfibers on the thermal, rheological and biodegradation properties of poly(lactic acid) based systems. Polymer Degradation and Stability, 2013, 98, 2742-2751.	2.7	42

#	Article	IF	CITATIONS
73	Keratins extracted from Merino wool and Brown Alpaca fibres: Thermal, mechanical and biological properties of PLLA based biocomposites. Materials Science and Engineering C, 2015, 47, 394-406.	3.8	42
74	Cellulose nanocrystals as templates for cetyltrimethylammonium bromide mediated synthesis of Ag nanoparticles and their novel use in PLA films. Carbohydrate Polymers, 2017, 157, 1557-1567.	5.1	39
75	Effect of Cellulose Nanocrystals and Bacterial Cellulose on Disintegrability in Composting Conditions of Plasticized PHB Nanocomposites. Polymers, 2017, 9, 561.	2.0	39
76	Cellulose nanocrystals thin films as gate dielectric for flexible organic field-effect transistors. Materials Letters, 2014, 126, 55-58.	1.3	38
77	Effect of reactive functionalization on properties and degradability of poly(lactic acid)/poly(vinyl) Tj ETQq1 1 0.7	84314 rgB1 2.0	「/Qverlock」
78	Controlled Release of Thymol from Poly(Lactic Acid)-Based Silver Nanocomposite Films with Antibacterial and Antioxidant Activity. Antioxidants, 2020, 9, 395.	2.2	38
79	Nonvolatile memory behavior of nanocrystalline cellulose/graphene oxide composite films. Applied Physics Letters, 2014, 105, 153111.	1.5	35
80	Combined effect of cellulose nanocrystals, carvacrol and oligomeric lactic acid in PLA_PHB polymeric films. Carbohydrate Polymers, 2019, 223, 115131.	5.1	35
81	PLA Nanocomposites Reinforced with Cellulose Nanocrystals from <i>Posidonia oceanica</i> and ZnO Nanoparticles for Packaging Application. Journal of Renewable Materials, 2017, 5, 103-115.	1.1	34
82	Effect of gallic acid and umbelliferone on thermal, mechanical, antioxidant and antimicrobial properties of poly (vinyl alcohol-co-ethylene) films. Polymer Degradation and Stability, 2018, 152, 162-176.	2.7	34
83	Integrated PLGA–Ag nanocomposite systems to control the degradation rate and antibacterial properties. Journal of Applied Polymer Science, 2013, 130, 1185-1193.	1.3	33
84	Processing and properties of poly(Îμ-caprolactone)/carbon nanofibre composite mats and films obtained by electrospinning and solvent casting. Journal of Materials Science, 2009, 44, 4789-4795.	1.7	30
85	Novel Poly(L-lactide) PLLA/SWNTs Nanocomposites for Biomedical Applications: Material Characterization and Biocompatibility Evaluation. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 541-556.	1.9	30
86	Preparation of transparent and conductive cellulose nanocrystals/graphene nanoplatelets films. Journal of Materials Science, 2014, 49, 1009-1013.	1.7	30
87	Processing and characterization of nanocomposite based on poly(butylene/triethylene succinate) copolymers and cellulose nanocrystals. Carbohydrate Polymers, 2017, 165, 51-60.	5.1	30
88	Preparation and characterization of polybutyleneâ€succinate/poly(ethyleneâ€glycol)/cellulose nanocrystals ternary composites. Journal of Applied Polymer Science, 2016, 133, .	1.3	28
89	Effect of poly(dl-lactide-co-glycolide) nanoparticles or cellulose nanocrystals-based formulations on Pseudomonas syringae pv. tomato (Pst) and tomato plant development. Journal of Plant Diseases and Protection, 2016, 123, 301-310.	1.6	28
90	Effective Postharvest Preservation of Kiwifruit and Romaine Lettuce with a Chitosan Hydrochloride Coating. Coatings, 2017, 7, 196.	1.2	28

ELENA FORTUNATI

21

#	Article	IF	CITATIONS
91	Revalorisation of Posidonia Oceanica as Reinforcement in Polyethylene/Maleic Anhydride Grafted Polyethylene Composites. Journal of Renewable Materials, 2014, 2, 66-76.	1.1	27
92	Effect of hydroxytyrosol methyl carbonate on the thermal, migration and antioxidant properties of <scp>PVA</scp> â€based films for active food packaging. Polymer International, 2016, 65, 872-882.	1.6	26
93	Characterization and enzymatic degradation study of poly(ε-caprolactone)-based biocomposites from almond agricultural by-products. Polymer Degradation and Stability, 2016, 132, 181-190.	2.7	26
94	Antimicrobial Properties and Cytocompatibility of PLGA/Ag Nanocomposites. Materials, 2016, 9, 37.	1.3	25
95	Thermal and bio-disintegration properties of poly(lactic acid)/natural rubber/organoclay nanocomposites. Applied Clay Science, 2014, 93-94, 78-84.	2.6	24
96	Controlled Release, Disintegration, Antioxidant, and Antimicrobial Properties of Poly (Lactic) Tj ETQq0 0 0 rgBT /0	Overlock 1	0 Tf 50 542 1 24
97	Spin coated cellulose nanocrystal/silver nanoparticle films. Carbohydrate Polymers, 2014, 113, 394-402.	5.1	23
98	Design of a nanocomposite substrate inducing adult stem cell assembly and progression toward an Epiblast-like or Primitive Endoderm-like phenotype via mechanotransduction. Biomaterials, 2017, 144, 211-229.	5.7	23
99	Effect of Fiber Surface Treatments on Thermo-Mechanical Behavior of Poly(Lactic Acid)/Phormium Tenax Composites. Journal of Polymers and the Environment, 2013, 21, 881-891.	2.4	22

100	Nanocellulose-Based Polymeric Blends for Food Packaging Applications. , 2016, , 205-252.	

101	Modulation of Acid Hydrolysis Reaction Time for the Extraction of Cellulose Nanocrystals from <i>Posidonia oceanica</i> Leaves. Journal of Renewable Materials, 2016, 4, 190-198.	1.1	21
102	Bio-Based Nanocomposites in Food Packaging. , 2018, , 71-110.		19
103	Exploring cellulose nanocrystals obtained from olive tree wastes as sustainable crop protection tool against bacterial diseases. Scientific Reports, 2022, 12, 6149.	1.6	18

104	Reinforcement effect of cellulose nanocrystals in thermoplastic polyurethane matrices characterized by different soft/hard segment ratio. Polymer Engineering and Science, 2017, 57, 521-530.	1.5	17
105	Production and properties of solventâ€cast poly(εâ€caprolactone) composites with carbon nanostructures. Journal of Applied Polymer Science, 2011, 119, 3544-3552.	1.3	16
106	Hydroxytyrosol as Active Ingredient in Poly(vinyl alcohol) Films for Food Packaging Applications. Journal of Renewable Materials, 2017, 5, 81-95.	1.1	15
107	Biodegradable Composite Scaffolds: A Strategy to Modulate Stem Cell Behaviour. Recent Patents on Drug Delivery and Formulation, 2013, 7, 9-17.	2.1	14

Effect of processing techniques on the 3<scp>D</scp> microstructure of poly (<scp>l</scp>â€lactic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 1.3 14 Science, 2015, 132, .

#	ARTICLE	IF	CITATIONS
109	Influence of Processing Conditions on Morphological, Thermal and Degradative Behavior of Nanocomposites Based on Plasticized Poly(3-hydroxybutyrate) and Organo-Modified Clay. Journal of Polymers and the Environment, 2016, 24, 12-22.	2.4	14
110	Lignocellulosic materials as reinforcements in sustainable packaging systems. , 2019, , 87-102.		14
111	Effect of mercapto-silanes on the functional properties of highly amorphous vinyl alcohol composites with reduced graphene oxide and cellulose nanocrystals. Composites Science and Technology, 2020, 200, 108458.	3.8	14
112	Life Cycle Analysis of Extruded Films Based on Poly(lactic acid)/Cellulose Nanocrystal/Limonene: A Comparative Study with ATBC Plasticized PLA/OMMT Systems. Journal of Polymers and the Environment, 2018, 26, 1891-1902.	2.4	13
113	Multifunctional Films, Blends, and Nanocomposites Based on Chitosan. , 2016, , 467-477.		11
114	Cellulose nano-biocomposites from high oleic sunflower oil-derived thermosets. European Polymer Journal, 2016, 79, 109-120.	2.6	11
115	Extraction of Lignocellulosic Materials From Waste Products. , 2016, , 1-38.		10
116	Multifunctional antimicrobial nanocomposites for food packaging applications. , 2017, , 265-303.		9
117	Effect of SWCNT introduction in random copolymers on material properties and fibroblast long term culture stability. Polymer Degradation and Stability, 2016, 132, 220-230.	2.7	8
118	Nanocomposites Based on PLLA and Multi Walled Carbon Nanotubes Support the Myogenic Differentiation of Murine Myoblast Cell Line. ISRN Tissue Engineering, 2013, 2013, 1-8.	0.5	6
119	Effect of Cellulose Nanocrystals on Fire, Thermal and Mechanical Behavior of N,N'-Diallyl-phenylphosphoricdiamide Modified Poly(lactic acid). Journal of Renewable Materials, 2017, 5, 423-434.	1.1	6
120	Okra Fibres as Potential Reinforcement in Biocomposites. , 2014, , 175-190.		5
121	Antibacterial activity of coumarin as an innovative organic control strategy for Xanthomonas euvesicatoria pv. euvesicatoria. Journal of Plant Diseases and Protection, 0, , 1.	1.6	4
122	Novel Nanoscaled Materials from Lignocellulosic Sources: Potential Applications in the Agricultural Sector. , 2017, , 1-24.		3
123	Novel Nanoscaled Materials from Lignocellulosic Sources: Potential Applications in the Agricultural Sector. , 2019, , 2657-2679.		3
124	Cellulose nanocrystals in nanocomposite approach: Green and high-performance materials for industrial, biomedical and agricultural applications. AIP Conference Proceedings, 2016, , .	0.3	2
125	Lignocellulosic materials as novel carriers, also at nanoscale, of organic active principles for agri-food applications. , 2019, , 161-178.		2
126	Innovative nanotechnological tools in plant and food protection. AIP Conference Proceedings, 2018, ,	0.3	1

#	Article	IF	CITATIONS
127	Natural Fibre Based Biopolymer Formulations with Potential Applications in Biomedical and Packaging Sector. Mini-Reviews in Organic Chemistry, 2021, 18, 450-464.	0.6	1
128	Organic antimicrobial nanomaterials and reducing copper use in sustainable plant protection. , 2022, , 179-209.		1
129	Biodegradable Composite Scaffolds: A Strategy to Modulate Stem Cell Behaviour. Recent Patents on Drug Delivery and Formulation, 2012, 7, 9-17.	2.1	Ο
130	Recent Advances in Conductive Composites Based on Biodegradable Polymers for Regenerative Medicine Applications. , 2017, , 519-542.		0
131	PLA nanocomposites from Posidonia oceanica waste. , 2017, , 347-363.		Ο
132	Biopolymeric Based Formulations for Industrial and Biomedical Applications. Current Organic Chemistry, 2018, 22, 1139-1140.	0.9	0