Er-Xiong Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/501891/publications.pdf Version: 2024-02-01

FR-XIONC DINC

#	Article	IF	CITATIONS
1	Floating catalyst CVD synthesis of single walled carbon nanotubes from ethylene for high performance transparent electrodes. Nanoscale, 2018, 10, 9752-9759.	5.6	73
2	Systematic investigation of the catalyst composition effects on single-walled carbon nanotubes synthesis in floating-catalyst CVD. Carbon, 2019, 149, 318-327.	10.3	50
3	Highly conductive and transparent single-walled carbon nanotube thin films from ethanol by floating catalyst chemical vapor deposition. Nanoscale, 2017, 9, 17601-17609.	5.6	45
4	Optimisation of carbon nanotube ink for large-area transparent conducting films fabricated by controllable rod-coating method. Carbon, 2014, 70, 103-110.	10.3	41
5	Fabrication and evaluation of adhesion enhanced flexible carbon nanotube transparent conducting films. Journal of Materials Chemistry C, 2015, 3, 3796-3802.	5.5	30
6	High-performance transparent conducting films of long single-walled carbon nanotubes synthesized from toluene alone. Nano Research, 2020, 13, 112-120.	10.4	29
7	Silicon Substitution in Nanotubes and Graphene via Intermittent Vacancies. Journal of Physical Chemistry C, 2019, 123, 13136-13140.	3.1	27
8	Fabrication and test of adhesion enhanced flexible carbon nanotube transparent conducting films. Applied Surface Science, 2014, 313, 220-226.	6.1	25
9	Largeâ€Diameter Carbon Nanotube Transparent Conductor Overcoming Performance–Yield Tradeoff. Advanced Functional Materials, 2022, 32, 2103397.	14.9	24
10	Gas phase synthesis of metallic and bimetallic catalyst nanoparticles by rod-to-tube type spark discharge generator. Journal of Aerosol Science, 2018, 123, 208-218.	3.8	23
11	High-performance single-walled carbon nanotube transparent conducting film fabricated by using low feeding rate of ethanol solution. Royal Society Open Science, 2018, 5, 180392.	2.4	23
12	Roles of sulfur in floating-catalyst CVD growth of single-walled carbon nanotubes for transparent conductive film applications. Chemical Engineering Journal, 2019, 378, 122010.	12.7	22
13	Scalable growth of single-walled carbon nanotubes with a highly uniform structure. Nanoscale, 2020, 12, 12263-12267.	5.6	22
14	Tuning Geometry of SWCNTs by CO ₂ in Floating Catalyst CVD for Highâ€Performance Transparent Conductive Films. Advanced Materials Interfaces, 2018, 5, 1801209.	3.7	20
15	Y-junction carbon nanocoils: synthesis by chemical vapor deposition and formation mechanism. Scientific Reports, 2015, 5, 11281.	3.3	18
16	Colors of Singleâ€Wall Carbon Nanotubes. Advanced Materials, 2021, 33, e2006395.	21.0	18
17	A timesaving, low-cost, high-yield method for the synthesis of ultrasmall uniform graphene oxide nanosheets and their application in surfactants. Nanotechnology, 2016, 27, 055601.	2.6	16
18	Electronâ€Beam Manipulation of Silicon Impurities in Singleâ€Walled Carbon Nanotubes. Advanced Functional Materials, 2019, 29, 1901327.	14.9	14

ER-XIONG DING

#	Article	IF	CITATIONS
19	Towards the synthesis of semiconducting single-walled carbon nanotubes by floating-catalyst chemical vapor deposition: Challenges of reproducibility. Carbon, 2022, 195, 92-100.	10.3	13
20	Growth of morphology-controllable carbon nanocoils from Ni nanoparticle prepared by spray-coating method. Carbon, 2015, 82, 604-607.	10.3	11
21	Hybrid Lowâ€Dimensional Carbon Allotropes Formed in Gas Phase. Advanced Functional Materials, 2020, 30, 2005016.	14.9	11
22	Wafer-Scale Thermophoretic Dry Deposition of Single-Walled Carbon Nanotube Thin Films. ACS Omega, 2018, 3, 1322-1328.	3.5	10
23	Temperature and voltage dependent current–voltage behavior of single-walled carbon nanotube transparent conducting films. Applied Surface Science, 2015, 355, 1201-1205.	6.1	9
24	Synthesis and optimization of tin dioxide/functionalized multi-walled carbon nanotube composites as anode in lithium-ion battery. Materials Chemistry and Physics, 2015, 153, 155-160.	4.0	8
25	Aerosol synthesis of single-walled carbon nanotubes by tuning feeding flow configuration for transparent conducting films. Diamond and Related Materials, 2021, 120, 108716.	3.9	8
26	Fast and Ultraclean Approach for Measuring the Transport Properties of Carbon Nanotubes. Advanced Functional Materials, 2020, 30, 1907150.	14.9	7
27	Hierarchical chrysanthemum-flower-like carbon nanomaterials grown by chemical vapor deposition. Nanotechnology, 2016, 27, 085602.	2.6	5
28	Dry-transferred single-walled carbon nanotube thin films for flexible and transparent heaters. Surfaces and Interfaces, 2022, 31, 101992.	3.0	4
29	Singleâ€Walled Carbon Nanotubes: Tuning Geometry of SWCNTs by CO ₂ in Floating Catalyst CVD for Highâ€Performance Transparent Conductive Films (Adv. Mater. Interfaces 23/2018). Advanced Materials Interfaces, 2018, 5, 1870114.	3.7	2
30	Carbon Nanotubes: Colors of Singleâ€Wall Carbon Nanotubes (Adv. Mater. 8/2021). Advanced Materials, 2021, 33, 2170060.	21.0	1
31	Substitutional Si Doping of Graphene and Nanotubes through Ion Irradiation-Induced Vacancies. Microscopy and Microanalysis, 2019, 25, 1574-1575.	0.4	0