Hsiang-Wen Hsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5018637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clouds of Spacecraft Debris Liberated by Hypervelocity Dust Impacts on Parker Solar Probe. Astrophysical Journal, 2022, 925, 27.	4.5	8
2	The 3D Direct Simulation Monte Carlo Study of Europa's Gas Plume. Universe, 2022, 8, 261.	2.5	3
3	Fine-grained regolith loss on sub-km asteroids. Nature Astronomy, 2022, 6, 1043-1050.	10.1	3
4	Laboratory Study of Antenna Signals Generated by Dust Impacts on Spacecraft. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028965.	2.4	7
5	Dynamics of electrostatically lofted dust on airless planetary bodies. Icarus, 2021, 366, 114519.	2.5	11
6	A Possible Dust Origin for an Unusual Feature in Io's Sodium Neutral Clouds. Astronomical Journal, 2021, 162, 190.	4.7	4
7	Magnetic Field Effect on Antenna Signals Induced by Dust Particle Impacts. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027245.	2.4	8
8	Laboratory measurements of initial launch velocities of electrostatically lofted dust on airless planetary bodies. Icarus, 2020, 352, 113972.	2.5	20
9	Understanding Cassini RPWS Antenna Signals Triggered by Dust Impacts. Geophysical Research Letters, 2019, 46, 10941-10950.	4.0	18
10	Circumplanetary Dust Populations. Space Science Reviews, 2019, 215, 1.	8.1	8
11	Close Cassini flybys of Saturn's ring moons Pan, Daphnis, Atlas, Pandora, and Epimetheus. Science, 2019, 364, .	12.6	24
12	Are Saturn's rings actually young?. Nature Astronomy, 2019, 3, 967-970.	10.1	25
13	Laboratory modeling of dust impact detection by the Cassini spacecraft. Planetary and Space Science, 2018, 156, 85-91.	1.7	24
14	Dust Observations by the Radio and Plasma Wave Science Instrument During Cassini's Grand Finale. Geophysical Research Letters, 2018, 45, 10,101.	4.0	16
15	Laboratory Investigation of Rate of Electrostatic Dust Lofting Over Time on Airless Planetary Bodies. Geophysical Research Letters, 2018, 45, 13,206.	4.0	17
16	Dust Emission by Active Moons. Space Science Reviews, 2018, 214, 1.	8.1	3
17	Dust grains fall from Saturn's D-ring into its equatorial upper atmosphere. Science, 2018, 362, .	12.6	37
18	In situ collection of dust grains falling from Saturn's rings into its atmosphere. Science, 2018, 362, .	12.6	44

2

HSIANG-WEN HSU

#	Article	IF	CITATIONS
19	Material Flux From the Rings of Saturn Into Its Atmosphere. Geophysical Research Letters, 2018, 45, 10,093.	4.0	25
20	Experimental Methods of Dust Charging and Mobilization on Surfaces with Exposure to Ultraviolet Radiation or Plasmas. Journal of Visualized Experiments, 2018, , .	0.3	2
21	Development of a Double Hemispherical Probe for Improved Space Plasma Measurements. Journal of Geophysical Research: Space Physics, 2018, 123, 2916-2925.	2.4	3
22	Cassini RPWS Dust Observation Near the Janus/Epimetheus Orbit. Journal of Geophysical Research: Space Physics, 2018, 123, 4952-4960.	2.4	9
23	Macromolecular organic compounds from the depths of Enceladus. Nature, 2018, 558, 564-568.	27.8	282
24	Electrostatic Dust Transport in Laboratory and Space. , 2018, , .		0
25	The charge state of electrostatically transported dust on regolith surfaces. Geophysical Research Letters, 2017, 44, 3059-3065.	4.0	47
26	Flux and composition of interstellar dust at Saturn from Cassini's Cosmic Dust Analyzer. Science, 2016, 352, 312-318.	12.6	97
27	Dust charging and transport on airless planetary bodies. Geophysical Research Letters, 2016, 43, 6103-6110.	4.0	130
28	Interplanetary magnetic field structure at Saturn inferred from nanodust measurements during the 2013 aurora campaign. Icarus, 2016, 263, 10-16.	2.5	5
29	Plasma potential in the sheaths of electronâ€emitting surfaces in space. Geophysical Research Letters, 2016, 43, 525-531.	4.0	40
30	Identification of when a Langmuir probe is in the sheath of a spacecraft: The effects of secondary electron emission from the probe. Journal of Geophysical Research: Space Physics, 2015, 120, 2428-2437.	2.4	9
31	Ongoing hydrothermal activities within Enceladus. Nature, 2015, 519, 207-210.	27.8	382
32	High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nature Communications, 2015, 6, 8604.	12.8	152
33	The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets. Planetary and Space Science, 2014, 104, 122-140.	1.7	56
34	The effects of magnetic fields on photoelectron-mediated spacecraft potential fluctuations. Journal of Geophysical Research: Space Physics, 2014, 119, 7319-7326.	2.4	2
35	Properties of dust particles near Saturn inferred from voltage pulses induced by dust impacts on Cassini spacecraft. Journal of Geophysical Research: Space Physics, 2014, 119, 6294-6312.	2.4	40
36	Probing IMF using nanodust measurements from inside Saturn's magnetosphere. Geophysical Research Letters, 2013, 40, 2902-2906.	4.0	6

HSIANG-WEN HSU

#	Article	IF	CITATIONS
37	Dust and spacecraft charging in Saturn's E ring. Earth, Planets and Space, 2013, 65, 149-156.	2.5	14
38	Spacecraft charging near Enceladus. Geophysical Research Letters, 2012, 39, .	4.0	9
39	Ballistic motion of dust particles in the Lunar Roving Vehicle dust trails. American Journal of Physics, 2012, 80, 452-456.	0.7	5
40	Dynamics, Composition, and Origin of Jovian and Saturnian Dust-Stream Particles. Astrophysics and Space Science Library, 2012, , 77-117.	2.7	9
41	Cassini dust stream particle measurements during the first three orbits at Saturn. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	16
42	Stream particles as the probe of the dust-plasma-magnetosphere interaction at Saturn. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	25
43	Mapping Magnetospheric Equatorial Regions at Saturn from Cassini Prime Mission Observations. Space Science Reviews, 2011, 164, 1-83.	8.1	40
44	The cosmic dust analyser onboard cassini: ten years of discoveries. CEAS Space Journal, 2011, 2, 3-16.	2.3	26
45	Observation of saturnian stream particles in the interplanetary space. Icarus, 2010, 206, 653-661.	2.5	17
46	Interaction of the solar wind and stream particles, results from the Cassini dust detector. , 2010, , .		6
47	Dusty Rings. , 0, , 308-337.		6
48	Enceladus and Titan: emerging worlds of the Solar System. Experimental Astronomy, 0, , 1.	3.7	1