Ulf Bergstr**Ã**¶m

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5018469/publications.pdf

Version: 2024-02-01

61 papers	2,442 citations	29 h-index	214800 47 g-index
62	62	62	2714
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Which factors can affect the productivity and dynamics of cod stocks in the Baltic Sea, Kattegat and Skagerrak?. Ocean and Coastal Management, 2022, 223, 106154.	4.4	7
2	Long-term decline in northern pike (Esox lucius L.) populations in the Baltic Sea revealed by recreational angling data. Fisheries Research, 2022, 251, 106307.	1.7	22
3	Ecological connectivity of the marine protected area network in the Baltic Sea, Kattegat and Skagerrak: Current knowledge and management needs. Ambio, 2022, 51, 1485-1503.	5 . 5	14
4	Increases of opportunistic species in response to ecosystem change: the case of the Baltic Sea three-spined stickleback. ICES Journal of Marine Science, 2022, 79, 1419-1434.	2.5	16
5	Habitat segregation of plate phenotypes in a rapidly expanding population of threeâ€spined stickleback. Ecosphere, 2021, 12, e03561.	2.2	7
6	Environmental compensation for biodiversity and ecosystem services: A flexible framework that addresses human wellbeing. Ecosystem Services, 2021, 50, 101319.	5 . 4	7
7	Predator biomass and vegetation influence the coastal distribution of threespine stickleback morphotypes. Ecology and Evolution, 2021, 11, 12485-12496.	1.9	3
8	Predicting the effects of eutrophication mitigation on predatory fish biomass and the value of recreational fisheries. Ambio, 2020, 49, 1090-1099.	5 . 5	4
9	Feeding and growth of Atlantic cod (Gadus morhua L.) in the eastern Baltic Sea under environmental change. ICES Journal of Marine Science, 2020, 77, 624-632.	2.5	55
10	Perch and pike recruitment in coastal bays limited by stickleback predation and environmental forcing. Estuarine, Coastal and Shelf Science, 2020, 246, 107052.	2.1	20
11	A spatial regime shift from predator to prey dominance in a large coastal ecosystem. Communications Biology, 2020, 3, 459.	4.4	56
12	Long-term changes in spatial overlap between interacting cod and flounder in the Baltic Sea. Hydrobiologia, 2020, 847, 2541-2553.	2.0	9
13	Cumulative impact assessment for ecosystem-based marine spatial planning. Science of the Total Environment, 2020, 734, 139024.	8.0	40
14	A Model for Disentangling Dependencies and Impacts among Human Activities and Marine Ecosystem Services. Environmental Management, 2020, 65, 575-586.	2.7	26
15	Benefits and costs of two temporary no-take zones. Marine Policy, 2020, 117, 103883.	3.2	3
16	Spatial contraction of demersal fish populations in a large marine ecosystem. Journal of Biogeography, 2019, 46, 633-645.	3.0	30
17	The first large-scale assessment of three-spined stickleback (Gasterosteus aculeatus) biomass and spatial distribution in the Baltic Sea. ICES Journal of Marine Science, 2019, 76, 1653-1665.	2.5	23
18	Relative impacts of fishing and eutrophication on coastal fish assessed by comparing a no-take area with an environmental gradient. Ambio, 2019, 48, 565-579.	5 . 5	24

#	Article	IF	Citations
19	Recreational boating degrades vegetation important for fish recruitment. Ambio, 2019, 48, 539-551.	5.5	33
20	Evaluating complex relationships between ecological indicators and environmental factors in the Baltic Sea: A machine learning approach. Ecological Indicators, 2019, 101, 117-125.	6.3	21
21	Conflicts in the coastal zone: human impacts on commercially important fish species utilizing coastal habitat. ICES Journal of Marine Science, 2018, 75, 1203-1213.	2.5	37
22	Essential coastal habitats for fish in the Baltic Sea. Estuarine, Coastal and Shelf Science, 2018, 204, 14-30.	2.1	48
23	Competition for the fish $\hat{a}\in$ fish extraction from the Baltic Sea by humans, aquatic mammals, and birds. ICES Journal of Marine Science, 2018, 75, 999-1008.	2.5	94
24	Response to comments by Heikinheimo et al. (in press) on Hansson et al. (2018): competition for the fishâ \in "fish extraction from the Baltic Sea by humans, aquatic mammals, and birds. ICES Journal of Marine Science, 2018, 75, 1837-1839.	2. 5	3
25	External nutrient loading from land, sea and atmosphere to all 656 Swedish coastal water bodies. Marine Pollution Bulletin, 2017, 114, 664-670.	5.0	16
26	Spatio-temporal dynamics of cod nursery areas in the Baltic Sea. Progress in Oceanography, 2017, 155, 28-40.	3.2	14
27	Modelling indices of abundance and size-based indicators of cod and flounder stocks in the Baltic Sea using newly standardized trawl survey data. ICES Journal of Marine Science, 2017, 74, 1322-1333.	2.5	26
28	Characterizing and predicting the distribution of Baltic Sea flounder (Platichthys flesus) during the spawning season. Journal of Sea Research, 2017, 126, 46-55.	1.6	11
29	DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem. PLoS ONE, 2017, 12, e0186929.	2.5	59
30	Size matters: relationships between body size and body mass of common coastal, aquatic invertebrates in the Baltic Sea. PeerJ, 2017, 5, e2906.	2.0	35
31	Spatio-temporal dynamics of a fish predator: Density-dependent and hydrographic effects on Baltic Sea cod population. PLoS ONE, 2017, 12, e0172004.	2.5	22
32	Distribution of mesopredatory fish determined by habitat variables in a predator-depleted coastal system. Marine Biology, 2016, 163, 201.	1.5	18
33	Coastal fish indicators response to natural and anthropogenic drivers–variability at temporal and different spatial scales. Estuarine, Coastal and Shelf Science, 2016, 183, 62-72.	2.1	23
34	Spawning areas of eastern Baltic cod revisited: Using hydrodynamic modelling to reveal spawning habitat suitability, egg survival probability, and connectivity patterns. Progress in Oceanography, 2016, 143, 13-25.	3. 2	23
35	Topâ€down control as important as nutrient enrichment for eutrophication effects in North Atlantic coastal ecosystems. Journal of Applied Ecology, 2016, 53, 1138-1147.	4.0	107
36	Cod pots in a Baltic fishery: are they efficient and what affects their efficiency?. ICES Journal of Marine Science, 2015, 72, 1545-1554.	2.5	32

#	Article	IF	Citations
37	Declining coastal piscivore populations in the Baltic Sea: Where and when do sticklebacks matter?. Ambio, 2015, 44, 462-471.	5.5	51
38	Stickleback increase in the Baltic Sea $\hat{a} \in A$ thorny issue for coastal predatory fish. Estuarine, Coastal and Shelf Science, 2015, 163, 134-142.	2.1	78
39	Nursery habitat availability limits adult stock sizes of predatory coastal fish. ICES Journal of Marine Science, 2014, 71, 672-680.	2.5	87
40	Ecological value of coastal habitats for commercially and ecologically important species. ICES Journal of Marine Science, 2014, 71, 648-665.	2.5	233
41	Testing the Potential for Predictive Modeling and Mapping and Extending Its Use as a Tool for Evaluating Management Scenarios and Economic Valuation in the Baltic Sea (PREHAB). Ambio, 2014, 43, 82-93.	5.5	11
42	Pikeperch (Sander lucioperca (L.)) in Decline: High Mortality of Three Populations in the Northern Baltic Sea. Ambio, 2014, 43, 325-336.	5 . 5	37
43	Shoreline development and degradation of coastal fish reproduction habitats. Ambio, 2014, 43, 1020-1028.	5.5	65
44	Egg production of turbot, Scophthalmus maximus, in the Baltic Sea. Journal of Sea Research, 2013, 84, 77-86.	1.6	9
45	Evaluating eutrophication management scenarios in the Baltic Sea using species distribution modelling. Journal of Applied Ecology, 2013, 50, 680-690.	4.0	43
46	The influence of environmental conditions on early life stages of flounder (Platichthys flesus) in the central Baltic Sea. Journal of Sea Research, 2013, 75, 77-84.	1.6	30
47	Empirical modelling of benthic species distribution, abundance, and diversity in the Baltic Sea: evaluating the scope for predictive mapping using different modelling approaches. ICES Journal of Marine Science, 2013, 70, 1233-1243.	2.5	45
48	Estimating Competition between Wildlife and Humans–A Case of Cormorants and Coastal Fisheries in the Baltic Sea. PLoS ONE, 2013, 8, e83763.	2.5	46
49	Effects of an offshore wind farm on temporal and spatial patterns in the demersal fish community. Marine Ecology - Progress Series, 2013, 485, 199-210.	1.9	94
50	Ecological coherence of marine protected area networks: a spatial assessment using species distribution models. Journal of Applied Ecology, 2011, 48, 112-120.	4.0	72
51	A meso-predator release of stickleback promotes recruitment of macroalgae in the Baltic Sea. Journal of Experimental Marine Biology and Ecology, 2011, 397, 79-84.	1.5	50
52	Effects of Altered Offshore Food Webs on Coastal Ecosystems Emphasize the Need for Cross-Ecosystem Management. Ambio, 2011, 40, 786-797.	5.5	100
53	Recruitment failure of coastal predatory fish in the Baltic Sea coincident with an offshore ecosystem regime shift. ICES Journal of Marine Science, 2010, 67, 1587-1595.	2.5	125
54	Characterisation of juvenile flatfish habitats in the Baltic Sea. Estuarine, Coastal and Shelf Science, 2009, 82, 294-300.	2.1	42

Ulf Bergstrã¶m

#	Article	IF	CITATIONS
55	Transferability of predictive fish distribution models in two coastal systems. Estuarine, Coastal and Shelf Science, 2009, 83, 90-96.	2.1	55
56	Spatial predictions of Baltic phytobenthic communities: Measuring robustness of generalized additive models based on transect data. Journal of Marine Systems, 2008, 74, S86-S96.	2.1	22
57	Plugging Space into Predatorâ€Prey Models: An Empirical Approach. American Naturalist, 2006, 167, 246-259.	2.1	35
58	Spatial scale, heterogeneity and functional responses. Journal of Animal Ecology, 2004, 73, 487-493.	2.8	29
59	Small-scale spatial structure of Baltic Sea zoobenthosâ€"inferring processes from patterns. Journal of Experimental Marine Biology and Ecology, 2002, 281, 123-136.	1.5	39
60	Estimating predation rates in experimental systems: scale-dependent effects of aggregative behaviour. Oikos, 2002, 97, 251-259.	2.7	30
61	Species diversity and distribution of aquatic macrophytes in the Northern Quark, Baltic Sea. Nordic Journal of Botany, 1999, 19, 375-383.	0.5	26