Mervi H Toivari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5018268/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Control of D-lactic acid content in P(LA-3HB) copolymer in the yeast Saccharomyces cerevisiae using a synthetic gene expression system. Metabolic Engineering Communications, 2022, 14, e00199.	1.9	4
2	Engineering of Saccharomyces cerevisiae for anthranilate and methyl anthranilate production. Microbial Cell Factories, 2021, 20, 34.	1.9	14
3	Production of D-lactic acid containing polyhydroxyalkanoate polymers in yeast Saccharomyces cerevisiae. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	1.4	9
4	Doing synthetic biology with photosynthetic microorganisms. Physiologia Plantarum, 2021, 173, 624-638.	2.6	20
5	Biotechnological production of glycolic acid and ethylene glycol: current state and perspectives. Applied Microbiology and Biotechnology, 2019, 103, 2525-2535.	1.7	74
6	Evaluation of synthetic formaldehyde and methanol assimilation pathways in Yarrowia lipolytica. Fungal Biology and Biotechnology, 2019, 6, 27.	2.5	20
7	Production of ethylene glycol or glycolic acid from D-xylose in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2017, 101, 8151-8163.	1.7	55
8	Single Cell Protein—State-of-the-Art, Industrial Landscape and Patents 2001–2016. Frontiers in Microbiology, 2017, 8, 2009.	1.5	376
9	Engineering Aspergillus nidulans for heterologous ent-kaurene and gamma-terpinene production. Applied Microbiology and Biotechnology, 2016, 100, 6345-6359.	1.7	11
10	Characterization and mutagenesis of two novel iron–sulphur cluster pentonate dehydratases. Applied Microbiology and Biotechnology, 2016, 100, 7549-7563.	1.7	27
11	Characterization of a unique Caulobacter crescentus aldose-aldose oxidoreductase having dual activities. Applied Microbiology and Biotechnology, 2016, 100, 673-685.	1.7	4
12	Production and applications of carbohydrate-derived sugar acids as generic biobased chemicals. Critical Reviews in Biotechnology, 2016, 36, 904-916.	5.1	84
13	A novel aldose-aldose oxidoreductase for co-production of D-xylonate and xylitol from D-xylose with Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2015, 99, 9439-9447.	1.7	17
14	The diverse role of Pdr12 in resistance to weak organic acids. Yeast, 2014, 31, 219-232.	0.8	42
15	l-Arabinose/d-galactose 1-dehydrogenase of Rhizobium leguminosarum bv. trifolii characterised and applied for bioconversion of l-arabinose to l-arabonate with Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2014, 98, 9653-9665.	1.7	15
16	Single cell and in vivo analyses elucidate the effect of xylC lactonase during production of D-xylonate in Saccharomyces cerevisiae. Metabolic Engineering, 2014, 25, 238-247.	3.6	27
17	Low pH d-xylonate production with Pichia kudriavzevii. Bioresource Technology, 2013, 133, 555-562.	4.8	68
18	Metabolic engineering of Saccharomyces cerevisiae for bioconversion of d-xylose to d-xylonate. Metabolic Engineering, 2012, 14, 427-436.	3.6	74

Mervi H Toivari

#	Article	IF	CITATIONS
19	Microbial d-xylonate production. Applied Microbiology and Biotechnology, 2012, 96, 1-8.	1.7	83
20	Identification and Characterization of a Novel Diterpene Gene Cluster in Aspergillus nidulans. PLoS ONE, 2012, 7, e35450.	1.1	52
21	Transcriptional Responses ofSaccharomyces cerevisiaeto Shift from Respiratory and Respirofermentative to Fully Fermentative Metabolism. OMICS A Journal of Integrative Biology, 2011, 15, 461-476.	1.0	24
22	Bioconversion of d-xylose to d-xylonate with Kluyveromyces lactis. Metabolic Engineering, 2011, 13, 383-391.	3.6	296
23	Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol. Applied Microbiology and Biotechnology, 2010, 85, 731-739.	1.7	21
24	Saccharomyces cerevisiae engineered to produce D-xylonate. Applied Microbiology and Biotechnology, 2010, 88, 751-760.	1.7	301
25	Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae. BMC Genomics, 2009, 10, 461.	1.2	59
26	Central carbon metabolism ofSaccharomyces cerevisiaein anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. FEMS Yeast Research, 2008, 8, 140-154.	1.1	72
27	Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A. BMC Systems Biology, 2008, 2, 60.	3.0	102
28	Metabolic Engineering of <i>Saccharomyces cerevisiae</i> for Conversion of <scp>d</scp> -Glucose to Xylitol and Other Five-Carbon Sugars and Sugar Alcohols. Applied and Environmental Microbiology, 2007, 73, 5471-5476.	1.4	36
29	Endogenous Xylose Pathway in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2004, 70, 3681-3686.	1.4	115
30	Effect of age and body weight on neurohumoral variables in healthy Cavalier King Charles Spaniels. American Journal of Veterinary Research, 2001, 62, 1818-1824.	0.3	15
31	Conversion of Xylose to Ethanol by Recombinant Saccharomyces cerevisiae: Importance of Xylulokinase (XKS1) and Oxygen Availability. Metabolic Engineering, 2001, 3, 236-249.	3.6	213
32	The role of xylulokinase inSaccharomyces cerevisiaexylulose catabolism. FEMS Microbiology Letters, 2000, 190, 39-43.	0.7	88
33	Ethanol inhibits IgE-induced degranulation and cytokine production in cultured mouse and human mast cells. Life Sciences, 2000, 67, 2795-2806.	2.0	15
34	Identification and Quantitation of Phosphorus Metabolites in Yeast Neutral pH Extracts by Nuclear Magnetic Resonance Spectroscopy. Analytical Biochemistry, 1999, 272, 71-79.	1.1	32
35	Evidence that the geneYLR070cofSaccharomyces cerevisiaeencodes a xylitol dehydrogenase. FEBS Letters, 1999, 457, 135-138.	1.3	89