
Pascal Rainard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5018095/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Innate immunity of the bovine mammary gland. Veterinary Research, 2006, 37, 369-400.	1.1	404
2	Escherichia coli and Staphylococcus aureus Elicit Differential Innate Immune Responses following Intramammary Infection. Vaccine Journal, 2004, 11, 463-472.	2.6	403
3	Differential response of bovine mammary epithelial cells to Staphylococcus aureus or Escherichia coli agonists of the innate immune system. Veterinary Research, 2013, 44, 40.	1.1	191
4	Differential Induction of Complement Fragment C5a and Inflammatory Cytokines during Intramammary Infections with Escherichia coli and Staphylococcus aureus. Vaccine Journal, 2000, 7, 161-167.	2.6	184
5	Differential cytokine and chemokine responses of bovine mammary epithelial cells to Staphylococcus aureus and Escherichia coli. Cytokine, 2007, 38, 12-21.	1.4	165
6	Knowledge gaps and research priorities in <i>Staphylococcus aureus</i> mastitis control. Transboundary and Emerging Diseases, 2018, 65, 149-165.	1.3	142
7	Cells and Cytokines in Inflammatory Secretions of Bovine Mammary Gland. , 2000, 480, 247-258.		106
8	The complement in milk and defense of the bovine mammary gland against infections. Veterinary Research, 2003, 34, 647-670.	1.1	104
9	Mammary microbiota of dairy ruminants: fact or fiction?. Veterinary Research, 2017, 48, 25.	1.1	94
10	Repertoire of Escherichia coli agonists sensed by innate immunity receptors of the bovine udder and mammary epithelial cells. Veterinary Research, 2012, 43, 14.	1.1	84
11	Leucotoxic Activities of Staphylococcus aureus Strains Isolated from Cows, Ewes, and Goats with Mastitis: Importance of LukM/LukF′-PV Leukotoxin. Vaccine Journal, 2003, 10, 272-277.	3.2	78
12	Invited review: Low milk somatic cell count and susceptibility to mastitis. Journal of Dairy Science, 2018, 101, 6703-6714.	1.4	78
13	LukM/LukF′-PV is the most active Staphylococcus aureus leukotoxin on bovine neutrophils. Microbes and Infection, 2006, 8, 2068-2074.	1.0	71
14	The chemokine CXCL3 is responsible for the constitutive chemotactic activity of bovine milk for neutrophils. Molecular Immunology, 2008, 45, 4020-4027.	1.0	70
15	Mobilization of neutrophils and defense of the bovine mammary gland. Reproduction, Nutrition, Development, 2003, 43, 439-457.	1.9	65
16	Investigating the contribution of IL-17A and IL-17F to the host response during Escherichia coli mastitis. Veterinary Research, 2015, 46, 56.	1.1	65
17	Genomic and proteomic characterization of <i>Staphylococcus aureus</i> mastitis isolates of bovine origin. Proteomics, 2011, 11, 2491-2502.	1.3	63
18	Staphylococcal-associated molecular patterns enhance expression of immune defense genes induced by IL-17 in mammary epithelial cells. Cytokine, 2011, 56, 749-759.	1.4	61

PASCAL RAINARD

#	Article	IF	CITATIONS
19	T Helper 17-Associated Cytokines Are Produced during Antigen-Specific Inflammation in the Mammary Gland. PLoS ONE, 2013, 8, e63471.	1.1	60
20	Muramyl Dipeptide Synergizes with <i>Staphylococcus aureus</i> Lipoteichoic Acid To Recruit Neutrophils in the Mammary Gland and To Stimulate Mammary Epithelial Cells. Vaccine Journal, 2010, 17, 1797-1809.	3.2	53
21	Sensing of Escherichia coli and LPS by mammary epithelial cells is modulated by O-antigen chain and CD14. PLoS ONE, 2018, 13, e0202664.	1.1	50
22	<i>Staphylococcus aureus</i> lipoteichoic acid triggers inflammation in the lactating bovine mammary gland. Veterinary Research, 2008, 39, 52.	1.1	48
23	Phagocytosis and killing of Staphylococcus aureus by bovine neutrophils after priming by tumor necrosis factor- and the des-arginine derivative of C5a. American Journal of Veterinary Research, 2000, 61, 951-959.	0.3	47
24	Local immunization impacts the response of dairy cows to Escherichia coli mastitis. Scientific Reports, 2017, 7, 3441.	1.6	47
25	Postgenomics Characterization of an Essential Genetic Determinant of Mammary Pathogenic <i>Escherichia coli</i> . MBio, 2018, 9, .	1.8	46
26	A Critical Appraisal of Probiotics for Mastitis Control. Frontiers in Veterinary Science, 2018, 5, 251.	0.9	45
27	IL-17A Is an Important Effector of the Immune Response of the Mammary Gland to <i>Escherichia coli</i> Infection. Journal of Immunology, 2016, 196, 803-812.	0.4	37
28	Behavioral and patho-physiological response as possible signs of pain in dairy cows during Escherichia coli mastitis: A pilot study. Journal of Dairy Science, 2017, 100, 8385-8397.	1.4	34
29	Dairy cows under experimentally-induced Escherichia coli mastitis show negative emotional states assessed through Qualitative Behaviour Assessment. Applied Animal Behaviour Science, 2018, 206, 1-11.	0.8	32
30	Escherichia coli mastitis strains: In vitro phenotypes and severity of infection in vivo. PLoS ONE, 2017, 12, e0178285.	1.1	31
31	Invited review: A critical appraisal of mastitis vaccines for dairy cows. Journal of Dairy Science, 2021, 104, 10427-10448.	1.4	30
32	Impact of Intramammary Treatment on Gene Expression Profiles in Bovine Escherichia coli Mastitis. PLoS ONE, 2014, 9, e85579.	1.1	28
33	Determination and Characterization of Bovine Interleukin-17 cDNA. Journal of Interferon and Cytokine Research, 2006, 26, 141-149.	0.5	27
34	Identification and characterization of a new interleukin-8 receptor in bovine species. Molecular Immunology, 2008, 45, 1153-1164.	1.0	27
35	Antigen-Specific Mammary Inflammation Depends on the Production of IL-17A and IFN-γ by Bovine CD4+ T Lymphocytes. PLoS ONE, 2015, 10, e0137755.	1.1	25
36	Innate and Adaptive Immunity Synergize to Trigger Inflammation in the Mammary Gland. PLoS ONE, 2016, 11, e0154172.	1.1	25

PASCAL RAINARD

#	Article	IF	CITATIONS
37	Staphylococcus aureusleucotoxin LukM/F' is secreted and stimulates neutralising antibody response in the course of intramammary infection. Veterinary Research, 2007, 38, 685-696.	1.1	24
38	Host factors determine the evolution of infection with Staphylococcus aureus to gangrenous mastitis in goats. Veterinary Research, 2018, 49, 72.	1.1	23
39	Staphylococcus aureus Phenol-Soluble Modulins Impair Interleukin Expression in Bovine Mammary Epithelial Cells. Infection and Immunity, 2016, 84, 1682-1692.	1.0	22
40	Permissiveness of bovine epithelial cells from lung, intestine, placenta and udder for infection with Coxiella burnetii. Veterinary Research, 2017, 48, 23.	1.1	21
41	The Mammary Gland in Mucosal and Regional Immunity. , 2015, , 2269-2306.		20
42	Binding of the Staphylococcus aureus leucotoxin LukM to its leucocyte targets. Microbial Pathogenesis, 2010, 49, 354-362.	1.3	19
43	Genetic susceptibility to S. aureus mastitis in sheep: differential expression of mammary epithelial cells in response to live bacteria or supernatant. Physiological Genomics, 2012, 44, 403-416.	1.0	19
44	Location-specific expression of chemokines, TNF-α and S100 proteins in a teat explant model. Innate Immunity, 2015, 21, 322-331.	1.1	17
45	Type 3 immunity: a perspective for the defense of the mammary gland against infections. Veterinary Research, 2020, 51, 129.	1.1	17
46	Th17-related mammary immunity, but not a high systemic Th1 immune response is associated with protection against E. coli mastitis. Npj Vaccines, 2020, 5, 108.	2.9	15
47	Purified Staphylococcus aureus leukotoxin LukM/F′ does not trigger inflammation in the bovine mammary gland. Microbial Pathogenesis, 2011, 51, 396-401.	1.3	14
48	Expansion, isolation and first characterization of bovine Th17 lymphocytes. Scientific Reports, 2019, 9, 16115.	1.6	14
49	Molecular analysis of the bovine anaphylatoxin C5a receptor. Journal of Leukocyte Biology, 2008, 84, 537-549.	1.5	13
50	Progress towards the Elusive Mastitis Vaccines. Vaccines, 2022, 10, 296.	2.1	13
51	Adaptive Cell-Mediated Immunity in the Mammary Gland of Dairy Ruminants. Frontiers in Veterinary Science, 2022, 9, 854890.	0.9	12
52	Shielding Effect of Escherichia coli O-Antigen Polysaccharide on J5-Induced Cross-Reactive Antibodies. MSphere, 2021, 6, .	1.3	10
53	Cellular and humoral immune response to recombinant Escherichia coli OmpA in cows. PLoS ONE, 2017, 12, e0187369.	1.1	10
54	Complement factor B and the alternative pathway of complement activation in bovine milk. Journal of Dairy Research, 2002, 69, 1-12.	0.7	7

#	Article	IF	CITATIONS
55	Letter to the Editor: Comments on "Mammary microbial dysbiosis leads to the zoonosis of bovine mastitis: a One-Health perspective―by Maity and Ambatipudi. FEMS Microbiology Ecology, 2021, 97, .	1.3	2
56	A reply to the comments on "Control of bovine mastitis in the 21st century: Immunize of tolerize?― Research in Veterinary Science, 2019, 127, 103-104.	0.9	0