
Stephen A Klein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5017891/publications.pdf Version: 2024-02-01

STEDHEN A KIEIN

#	Article	IF	CITATIONS
1	GFDL's CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics. Journal of Climate, 2006, 19, 643-674.	3.2	1,431
2	The Seasonal Cycle of Low Stratiform Clouds. Journal of Climate, 1993, 6, 1587-1606.	3.2	1,289
3	Remote Sea Surface Temperature Variations during ENSO: Evidence for a Tropical Atmospheric Bridge. Journal of Climate, 1999, 12, 917-932.	3.2	1,235
4	The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3. Journal of Climate, 2011, 24, 3484-3519.	3.2	887
5	Causes of Higher Climate Sensitivity in CMIP6 Models. Geophysical Research Letters, 2020, 47, e2019GL085782.	4.0	759
6	The New GFDL Global Atmosphere and Land Model AM2–LM2: Evaluation with Prescribed SST Simulations. Journal of Climate, 2004, 17, 4641-4673.	3.2	756
7	An Assessment of Earth's Climate Sensitivity Using Multiple Lines of Evidence. Reviews of Geophysics, 2020, 58, e2019RG000678.	23.0	498
8	COSP: Satellite simulation software for model assessment. Bulletin of the American Meteorological Society, 2011, 92, 1023-1043.	3.3	483
9	Taking climate model evaluation to the next level. Nature Climate Change, 2019, 9, 102-110.	18.8	407
10	The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution. Journal of Advances in Modeling Earth Systems, 2019, 11, 2089-2129.	3.8	404
11	Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. Journal of Geophysical Research, 2010, 115, .	3.3	361
12	Validation and Sensitivities of Frontal Clouds Simulated by the ECMWF Model. Monthly Weather Review, 1999, 127, 2514-2531.	1.4	350
13	Identification of human-induced changes in atmospheric moisture content. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15248-15253.	7.1	271
14	Amplification of Surface Temperature Trends and Variability in the Tropical Atmosphere. Science, 2005, 309, 1551-1556.	12.6	267
15	Evidence for climate change in the satellite cloud record. Nature, 2016, 536, 72-75.	27.8	264
16	Exposing Global Cloud Biases in the Community Atmosphere Model (CAM) Using Satellite Observations and Their Corresponding Instrument Simulators. Journal of Climate, 2012, 25, 5190-5207.	3.2	251
17	Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. Journal of Geophysical Research, 2005, 110, .	3.3	250
18	Consistency of modelled and observed temperature trends in the tropical troposphere. International Journal of Climatology, 2008, 28, 1703-1722.	3.5	236

#	Article	IF	CITATIONS
19	Contributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5*. Journal of Climate, 2013, 26, 5007-5027.	3.2	235
20	Intercomparison of model simulations of mixedâ€phase clouds observed during the ARM Mixedâ€Phase Arctic Cloud Experiment. I: singleâ€layer cloud. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 979-1002.	2.7	224
21	Impact of decadal cloud variations on the Earth's energy budget. Nature Geoscience, 2016, 9, 871-874.	12.9	220
22	Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels. Journal of Climate, 2012, 25, 3715-3735.	3.2	195
23	Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1329-1342.	3.3	195
24	Progressing emergent constraints on future climate change. Nature Climate Change, 2019, 9, 269-278.	18.8	195
25	Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude, and Optical Depth. Journal of Climate, 2012, 25, 3736-3754.	3.2	192
26	A comparison of model-simulated trends in stratospheric temperatures. Quarterly Journal of the Royal Meteorological Society, 2003, 129, 1565-1588.	2.7	189
27	The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6. Geoscientific Model Development, 2017, 10, 359-384.	3.6	186
28	On the Relationships among Low-Cloud Structure, Sea Surface Temperature, and Atmospheric Circulation in the Summertime Northeast Pacific. Journal of Climate, 1995, 8, 1140-1155.	3.2	175
29	The Transpose-AMIP II Experiment and Its Application to the Understanding of Southern Ocean Cloud Biases in Climate Models. Journal of Climate, 2013, 26, 3258-3274.	3.2	168
30	An Overview of the Atmospheric Component of the Energy Exascale Earth System Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 2377-2411.	3.8	168
31	Incorporating model quality information in climate change detection and attribution studies. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14778-14783.	7.1	156
32	Mechanisms Affecting the Transition from Shallow to Deep Convection over Land: Inferences from Observations of the Diurnal Cycle Collected at the ARM Southern Great Plains Site. Journals of the Atmospheric Sciences, 2010, 67, 2943-2959.	1.7	155
33	On the spread of changes in marine low cloud cover in climate model simulations of the 21st century. Climate Dynamics, 2014, 42, 2603-2626.	3.8	151
34	An Observational Study of Diurnal Variations of Marine Stratiform Cloud. Journal of Climate, 1995, 8, 1795-1809.	3.2	145
35	Forced and unforced ocean temperature changes in Atlantic and Pacific tropical cyclogenesis regions. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13905-13910.	7.1	145
36	Emergent Constraints for Cloud Feedbacks. Current Climate Change Reports, 2015, 1, 276-287.	8.6	142

#	Article	IF	CITATIONS
37	Temporal Homogenization of Monthly Radiosonde Temperature Data. Part I: Methodology. Journal of Climate, 2003, 16, 224-240.	3.2	141
38	CLOUDS AND MORE: ARM Climate Modeling Best Estimate Data. Bulletin of the American Meteorological Society, 2010, 91, 13-20.	3.3	139
39	Positive tropical marine low loud cover feedback inferred from cloud ontrolling factors. Geophysical Research Letters, 2015, 42, 7767-7775.	4.0	135
40	Insights from a refined decomposition of cloud feedbacks. Geophysical Research Letters, 2016, 43, 9259-9269.	4.0	134
41	Unresolved spatial variability and microphysical process rates in large-scale models. Journal of Geophysical Research, 2000, 105, 27059-27065.	3.3	129
42	Low-Cloud Feedbacks from Cloud-Controlling Factors: A Review. Surveys in Geophysics, 2017, 38, 1307-1329.	4.6	127
43	Intercomparison and evaluation of cumulus parametrizations under summertime midlatitude continental conditions. Quarterly Journal of the Royal Meteorological Society, 2002, 128, 1095-1135.	2.7	119
44	Diagnosis of the summertime warm and dry bias over the U.S. Southern Great Plains in the GFDL climate model using a weather forecasting approach. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	112
45	The DOE E3SM Coupled Model Version 1: Description and Results at High Resolution. Journal of Advances in Modeling Earth Systems, 2019, 11, 4095-4146.	3.8	112
46	Synoptic Variability of Low-Cloud Properties and Meteorological Parameters in the Subtropical Trade Wind Boundary Layer. Journal of Climate, 1997, 10, 2018-2039.	3.2	110
47	On the Correspondence between Mean Forecast Errors and Climate Errors in CMIP5 Models. Journal of Climate, 2014, 27, 1781-1798.	3.2	110
48	The PreVOCA experiment: modeling the lower troposphere in the Southeast Pacific. Atmospheric Chemistry and Physics, 2010, 10, 4757-4774.	4.9	109
49	Statistical significance of climate sensitivity predictors obtained by data mining. Geophysical Research Letters, 2014, 41, 1803-1808.	4.0	109
50	A comparison of single column model simulations of summertime midlatitude continental convection. Journal of Geophysical Research, 2000, 105, 2091-2124.	3.3	107
51	Toward understanding of differences in current cloud retrievals of ARM groundâ€based measurements. Journal of Geophysical Research, 2012, 117, .	3.3	107
52	Temporal Homogenization of Monthly Radiosonde Temperature Data. Part II: Trends, Sensitivities, and MSU Comparison. Journal of Climate, 2003, 16, 241-262.	3.2	105
53	Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a <scp>G</scp> reen's function approach. Journal of Advances in Modeling Earth Systems, 2017, 9, 2174-2189.	3.8	103
54	Uncertainty in Signals of Large-Scale Climate Variations in Radiosonde and Satellite Upper-Air Temperature Datasets. Journal of Climate, 2004, 17, 2225-2240.	3.2	102

#	Article	IF	CITATIONS
55	A comparison of low-latitude cloud properties and their response to climate change in three AGCMs sorted into regimes using mid-tropospheric vertical velocity. Climate Dynamics, 2006, 27, 261-279.	3.8	101
56	Seasonal Variations of Tropical Intraseasonal Oscillations: A 20–25-Day Oscillation in the Western Pacific. Journals of the Atmospheric Sciences, 1992, 49, 1277-1289.	1.7	94
57	Evaluation of Forecasted Southeast Pacific Stratocumulus in the NCAR, GFDL, and ECMWF Models. Journal of Climate, 2009, 22, 2871-2889.	3.2	94
58	Modeling the Interactions between Aerosols and Liquid Water Clouds with a Self-Consistent Cloud Scheme in a General Circulation Model. Journals of the Atmospheric Sciences, 2007, 64, 1189-1209.	1.7	91
59	Observed Large-Scale Structures and Diabatic Heating and Drying Profiles during TWP-ICE. Journal of Climate, 2010, 23, 57-79.	3.2	91
60	The Role of Clouds, Water Vapor, Circulation, and Boundary Layer Structure in the Sensitivity of the Tropical Climate. Journal of Climate, 1999, 12, 2359-2374.	3.2	87
61	Clearing clouds of uncertainty. Nature Climate Change, 2017, 7, 674-678.	18.8	87
62	The role of vertically varying cloud fraction in the parametrization of microphysical processes in the ECMWF model. Quarterly Journal of the Royal Meteorological Society, 1999, 125, 941-965.	2.7	85
63	A parametrization of the effects of cloud and precipitation overlap for use in general-circulation models. Quarterly Journal of the Royal Meteorological Society, 2000, 126, 2525-2544.	2.7	84
64	Intercomparison of model simulations of mixedâ€phase clouds observed during the ARM Mixedâ€Phase Arctic Cloud Experiment. II: Multilayer cloud. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 1003-1019.	2.7	84
65	Factors Controlling the Vertical Extent of Fair-Weather Shallow Cumulus Clouds over Land: Investigation of Diurnal-Cycle Observations Collected at the ARM Southern Great Plains Site. Journals of the Atmospheric Sciences, 2013, 70, 1297-1315.	1.7	80
66	Low loud optical depth feedback in climate models. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6052-6065.	3.3	80
67	Parametric sensitivity analysis of precipitation at global and local scales in the Community Atmosphere Model CAM5. Journal of Advances in Modeling Earth Systems, 2015, 7, 382-411.	3.8	80
68	Impact of horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating for the TWPâ€ICE period. Journal of Geophysical Research, 2010, 115, .	3.3	79
69	On the Correspondence between Short- and Long-Time-Scale Systematic Errors in CAM4/CAM5 for the Year of Tropical Convection. Journal of Climate, 2012, 25, 7937-7955.	3.2	79
70	Radiative and Dynamical Feedbacks over the Equatorial Cold Tongue: Results from Nine Atmospheric GCMs. Journal of Climate, 2006, 19, 4059-4074.	3.2	76
71	Role of eastward propagating convection systems in the diurnal cycle and seasonal mean of summertime rainfall over the U.S. Great Plains. Geophysical Research Letters, 2006, 33, .	4.0	74
72	Evaluating Emergent Constraints on Equilibrium Climate Sensitivity. Journal of Climate, 2018, 31, 3921-3942.	3.2	74

#	Article	IF	CITATIONS
73	Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity. Nature Climate Change, 2021, 11, 501-507.	18.8	74
74	The relationship between interannual and longâ€ŧerm cloud feedbacks. Geophysical Research Letters, 2015, 42, 10,463.	4.0	73
75	Parameterization of the Atmospheric Boundary Layer: A View from Just Above the Inversion. Bulletin of the American Meteorological Society, 2008, 89, 453-458.	3.3	70
76	Albedo bias and the horizontal variability of clouds in subtropical marine boundary layers: Observations from ships and satellites. Journal of Geophysical Research, 1999, 104, 6183-6191.	3.3	66
77	Simulations of midlatitude frontal clouds by single-column and cloud-resolving models during the Atmospheric Radiation Measurement March 2000 cloud intensive operational period. Journal of Geophysical Research, 2005, 110, .	3.3	66
78	Aerosol first indirect effects on nonâ€precipitating lowâ€level liquid cloud properties as simulated by CAM5 at ARM sites. Geophysical Research Letters, 2012, 39, .	4.0	66
79	Using Stochastically Generated Subcolumns to Represent Cloud Structure in a Large-Scale Model. Monthly Weather Review, 2006, 134, 3644-3656.	1.4	62
80	Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations. Journal of Geophysical Research, 2011, 116, .	3.3	62
81	CAUSES: Attribution of Surface Radiation Biases in NWP and Climate Models near the U.S. Southern Great Plains. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3612-3644.	3.3	62
82	Arctic synoptic regimes: Comparing domainâ€wide Arctic cloud observations with CAM4 and CAM5 during similar dynamics. Journal of Geophysical Research, 2012, 117, .	3.3	60
83	CMIP3 Subtropical Stratocumulus Cloud Feedback Interpreted through a Mixed-Layer Model. Journal of Climate, 2013, 26, 1607-1625.	3.2	60
84	The strength of the tropical inversion and its response to climate change in 18 CMIP5 models. Climate Dynamics, 2015, 45, 375-396.	3.8	60
85	CAUSES: On the Role of Surface Energy Budget Errors to the Warm Surface Air Temperature Error Over the Central United States. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2888-2909.	3.3	60
86	Low Cloud Type over the Ocean from Surface Observations. Part III: Relationship to Vertical Motion and the Regional Surface Synoptic Environment. Journal of Climate, 2000, 13, 245-256.	3.2	59
87	Cluster analysis of tropical clouds using CloudSat data. Geophysical Research Letters, 2007, 34, .	4.0	58
88	Overlap assumptions for assumed probability distribution function cloud schemes in large-scale models. Journal of Geophysical Research, 2005, 110, .	3.3	57
89	Constraining the lowâ€cloud optical depth feedback at middle and high latitudes using satellite observations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9696-9716.	3.3	57
90	Cluster analysis of cloud regimes and characteristic dynamics of midlatitude synoptic systems in observations and a model. Journal of Geophysical Research, 2005, 110, .	3.3	56

#	Article	IF	CITATIONS
91	Evaluation of Clouds in Version 1 of the E3SM Atmosphere Model With Satellite Simulators. Journal of Advances in Modeling Earth Systems, 2019, 11, 1253-1268.	3.8	55
92	Spurious changes in the ISCCP dataset. Geophysical Research Letters, 1993, 20, 455-458.	4.0	54
93	An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models. Journal of Advances in Modeling Earth Systems, 2015, 7, 1810-1827.	3.8	54
94	Introduction to CAUSES: Description of Weather and Climate Models and Their Near‣urface Temperature Errors in 5Âday Hindcasts Near the Southern Great Plains. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2655-2683.	3.3	53
95	Modeling springtime shallow frontal clouds with cloud-resolving and single-column models. Journal of Geophysical Research, 2005, 110, .	3.3	51
96	The parametric sensitivity of CAM5's MJO. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1424-1444.	3.3	51
97	On the diurnal cycle of deep convection, highâ€level cloud, and upper troposphere water vapor in the Multiscale Modeling Framework. Journal of Geophysical Research, 2008, 113, .	3.3	50
98	Regionally refined test bed in E3SM atmosphere model version 1 (EAMv1) and applications for high-resolution modeling. Geoscientific Model Development, 2019, 12, 2679-2706.	3.6	49
99	Evaluation of tropical cloud and precipitation statistics of Community Atmosphere Model version 3 using CloudSat and CALIPSO data. Journal of Geophysical Research, 2010, 115, .	3.3	46
100	Metrics and Diagnostics for Precipitation-Related Processes in Climate Model Short-Range Hindcasts. Journal of Climate, 2013, 26, 1516-1534.	3.2	45
101	Simulations of Arctic mixedâ€phase clouds in forecasts with CAM3 and AM2 for Mâ€PACE. Journal of Geophysical Research, 2008, 113, .	3.3	44
102	Observed Boundary Layer Controls on Shallow Cumulus at the ARM Southern Great Plains Site. Journals of the Atmospheric Sciences, 2018, 75, 2235-2255.	1.7	43
103	On the Contribution of Longwave Radiation to Global Climate Model Biases in Arctic Lower Tropospheric Stability. Journal of Climate, 2014, 27, 7250-7269.	3.2	41
104	Near-surface meteorology during the Arctic Summer Cloud Ocean Study (ASCOS): evaluation of reanalyses and global climate models. Atmospheric Chemistry and Physics, 2014, 14, 427-445.	4.9	41
105	Observed Sensitivity of Low-Cloud Radiative Effects to Meteorological Perturbations over the Global Oceans. Journal of Climate, 2020, 33, 7717-7734.	3.2	41
106	Creating Climate Reference Datasets: CARDS Workshop on Adjusting Radiosonde Temperature Data for Climate Monitoring. Bulletin of the American Meteorological Society, 2002, 83, 891-899.	3.3	40
107	Climate Model Forecast Experiments for TOGA COARE. Monthly Weather Review, 2008, 136, 808-832.	1.4	39
108	Landâ€atmosphere coupling manifested in warmâ€season observations on the U.S. southern great plains. Journal of Geophysical Research D: Atmospheres, 2014, 119, 509-528.	3.3	39

#	Article	IF	CITATIONS
109	TWPâ€ICE global atmospheric model intercomparison: Convection responsiveness and resolution impact. Journal of Geophysical Research, 2012, 117, .	3.3	38
110	External Influences on Modeled and Observed Cloud Trends. Journal of Climate, 2015, 28, 4820-4840.	3.2	37
111	Long-Term Observations of the Convective Boundary Layer Using Insect Radar Returns at the SGP ARM Climate Research Facility. Journal of Climate, 2010, 23, 5699-5714.	3.2	33
112	CAUSES: Diagnosis of the Summertime Warm Bias in CMIP5 Climate Models at the ARM Southern Great Plains Site. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2968-2992.	3.3	33
113	The Effect of Land Surface Heterogeneity and Background Wind on Shallow Cumulus Clouds and the Transition to Deeper Convection. Journals of the Atmospheric Sciences, 2019, 76, 401-419.	1.7	33
114	Critical Evaluation of the ISCCP Simulator Using Ground-Based Remote Sensing Data. Journal of Climate, 2011, 24, 1598-1612.	3.2	31
115	Regional assessment of the parameterâ€dependent performance of CAM4 in simulating tropical clouds. Geophysical Research Letters, 2012, 39, .	4.0	31
116	The atmospheric hydrologic cycle in the ACME v0.3 model. Climate Dynamics, 2018, 50, 3251-3279.	3.8	31
117	How might a statistical cloud scheme be coupled to a mass-flux convection scheme?. Journal of Geophysical Research, 2005, 110, .	3.3	30
118	Precipitation Partitioning, Tropical Clouds, and Intraseasonal Variability in GFDL AM2. Journal of Climate, 2013, 26, 5453-5466.	3.2	30
119	Large-Eddy Simulation of Shallow Cumulus over Land: A Composite Case Based on ARM Long-Term Observations at Its Southern Great Plains Site. Journals of the Atmospheric Sciences, 2017, 74, 3229-3251.	1.7	28
120	The influence of dynamics on twoâ€dimensional model results: Simulations of ¹⁴ C and stratospheric aircraft NO _{<i>x</i>} injections. Journal of Geophysical Research, 1991, 96, 22559-22572.	3.3	27
121	An assessment of ECMWF analyses and model forecasts over the North Slope of Alaska using observations from the ARM Mixed-Phase Arctic Cloud Experiment. Journal of Geophysical Research, 2006, 111, .	3.3	26
122	Developing large-scale forcing data for single-column and cloud-resolving models from the Mixed-Phase Arctic Cloud Experiment. Journal of Geophysical Research, 2006, 111, .	3.3	24
123	Using ARM Observations to Evaluate Climate Model Simulations of Landâ€Atmosphere Coupling on the U.S. Southern Great Plains. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,524.	3.3	24
124	The ARM Cloud Radar Simulator for Global Climate Models: Bridging Field Data and Climate Models. Bulletin of the American Meteorological Society, 2018, 99, 21-26.	3.3	24
125	Evaluating Climate Models' Cloud Feedbacks Against Expert Judgment. Journal of Geophysical Research D: Atmospheres, 2022, 127, e2021JD035198.	3.3	24
126	Using regime analysis to identify the contribution of clouds to surface temperature errors in weather and climate models. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 3190-3206.	2.7	22

#	Article	IF	CITATIONS
127	Assessment of marine boundary layer cloud simulations in the CAM with CLUBB and updated microphysics scheme based on ARM observations from the Azores. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8472-8492.	3.3	20
128	Drivers of the Low-Cloud Response to Poleward Jet Shifts in the North Pacific in Observations and Models. Journal of Climate, 2018, 31, 7925-7947.	3.2	20
129	Differences in Eddyâ€Correlation and Energyâ€Balance Surface Turbulent Heat Flux Measurements and Their Impacts on the Largeâ€Scale Forcing Fields at the ARM SCP Site. Journal of Geophysical Research D: Atmospheres, 2019, 124, 3301-3318.	3.3	19
130	Continental liquid water cloud variability and its parameterization using Atmospheric Radiation Measurement data. Journal of Geophysical Research, 2005, 110, .	3.3	18
131	Better calibration of cloud parameterizations and subgrid effects increases the fidelity of the E3SM Atmosphere Model version 1. Geoscientific Model Development, 2022, 15, 2881-2916.	3.6	17
132	The Cloud Feedback Model Intercomparison Project (CFMIP) Diagnostic Codes Catalogue – metrics, diagnostics and methodologies to evaluate, understand and improve the representation of clouds and cloud feedbacks in climate models. Geoscientific Model Development, 2017, 10, 4285-4305.	3.6	16
133	Mechanisms Behind the Extratropical Stratiform Low loud Optical Depth Response to Temperature in ARM Site Observations. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2127-2147.	3.3	16
134	Low-Cloud Feedbacks from Cloud-Controlling Factors: A Review. Space Sciences Series of ISSI, 2017, , 135-157.	0.0	14
135	Interpreting the Diurnal Cycle of Clouds and Precipitation in the ARM GoAmazon Observations: Shallow to Deep Convection Transition. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033766.	3.3	13
136	A cloudy planetary boundary layer oscillation arising from the coupling of turbulence with precipitation in climate simulations. Journal of Advances in Modeling Earth Systems, 2017, 9, 1973-1993.	3.8	12
137	On the Emergent Constraints of Climate Sensitivity. Journal of Climate, 2018, 31, 863-875.	3.2	11
138	Comment on "Observational and Model Evidence for Positive Low-Level Cloud Feedback― Science, 2010, 329, 277-277.	12.6	10
139	Lowâ€cloud characteristics over the tropical western Pacific from ARM observations and CAM5 simulations. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8953-8970.	3.3	10
140	A Hindcast Approach to Diagnosing the Equatorial Pacific Cold Tongue SST Bias in CESM1. Journal of Climate, 2020, 33, 1437-1453.	3.2	10
141	On the Correspondence Between Atmosphereâ€Only and Coupled Simulations for Radiative Feedbacks and Forcing From CO ₂ . Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	10
142	A multi-year short-range hindcast experiment with CESM1 for evaluating climate model moist processes from diurnal to interannual timescales. Geoscientific Model Development, 2021, 14, 73-90.	3.6	9
143	On the Correspondence between Seasonal Forecast Biases and Long-Term Climate Biases in Sea Surface Temperature. Journal of Climate, 2020, 34, 427-446.	3.2	7
144	The Impact of ARM on Climate Modeling. Meteorological Monographs, 2016, 57, 26.1-26.16.	5.0	6

#	Article	IF	CITATIONS
145	Assessment of Precipitating Marine Stratocumulus Clouds in the E3SMv1 Atmosphere Model: A Case Study from the ARM MAGIC Field Campaign. Monthly Weather Review, 2020, 148, 3341-3359.	1.4	6
146	Superior Daily and Subâ€Daily Precipitation Statistics for Intense and Longâ€Lived Storms in Global Stormâ€Resolving Models. Geophysical Research Letters, 2022, 49, .	4.0	5
147	Comments on "Moist Convective Velocity and Buoyancy Scales― Journals of the Atmospheric Sciences, 1997, 54, 2775-2777.	1.7	4
148	Dynamical controls on sub–global climate model grid-scale cloud variability for Atmospheric Radiation Measurement Program (ARM) case 4. Journal of Geophysical Research, 2005, 110, .	3.3	4
149	Introduction to special section on Toward Reducing Cloud-Climate Uncertainties in Atmospheric General Circulation Models. Journal of Geophysical Research, 2005, 110, .	3.3	3
150	Consistency of Modeled and Observed Temperature Trends in the Tropical Troposphere. , 2018, , 85-136.		3
151	Summertime Continental Shallow Cumulus Cloud Detection Using GOES-16 Satellite and Ground-Based Stereo Cameras at the DOE ARM Southern Great Plains Site. Remote Sensing, 2021, 13, 2309.	4.0	2
152	What Determines the Number and the Timing of Pulses in Afternoon Precipitation in the Green Ocean Amazon (GoAmazon) Observations?. Geophysical Research Letters, 2022, 49, .	4.0	2
153	How Does Land Cover and Its Heterogeneity Length Scales Affect the Formation of Summertime Shallow Cumulus Clouds in Observations From the US Southern Great Plains?. Geophysical Research Letters, 2022, 49, .	4.0	2
154	On the spread of changes in marine low cloud cover in climate model simulations of the 21st century.		1

¹⁵⁴ , 2014, 42, 2603.