Han-Pu Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5017773/publications.pdf

Version: 2024-02-01

361413 454955 2,973 30 20 30 citations h-index g-index papers 33 33 33 4341 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Stable and efficient seawater splitting on a porous phosphate-intercalated NiFe (oxy)hydroxide@NiMoO4 core-shell micropillar electrode., 2022, 1, 100015.		15
2	Surfactant-assisted implantation strategy for facile construction of Pt-based hybrid electrocatalyst to accelerate oxygen reduction reaction. Materials Today Energy, 2022, 24, 100919.	4.7	6
3	Mesoporous carbon promoting the efficiency and stability of single atomic electrocatalysts for oxygen reduction reaction. Carbon, 2022, 191, 393-402.	10.3	33
4	Highly Active Fe/Pt Single-Atom Bifunctional Electrocatalysts on Biomass-Derived Carbon. ACS Sustainable Chemistry and Engineering, 2021, 9, 189-196.	6.7	30
5	Fe-Induced electronic optimization of mesoporous Co–Ni oxide nanosheets as an efficient binder-free electrode for the oxygen evolution reaction. New Journal of Chemistry, 2021, 45, 6424-6431.	2.8	4
6	Construction of nitrogen-doped porous carbon nanosheets decorated with Fe–N ₄ and iron oxides by a biomass coordination strategy for efficient oxygen reduction reaction. New Journal of Chemistry, 2021, 45, 14570-14579.	2.8	6
7	Directed assembly of ultrasmall nitrogen coordinated Ir nanoparticles for enhanced electrocatalysis. Electrochimica Acta, 2021, 370, 137710.	5.2	10
8	Green Synthesis of a Highly Efficient and Stable Single-Atom Iron Catalyst Anchored on Nitrogen-Doped Carbon Nanorods for the Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2021, 9, 137-146.	6.7	35
9	In situ synthesis of sustainable highly efficient single iron atoms anchored on nitrogen doped carbon derived from renewable biomass. Carbon, 2020, 157, 614-621.	10.3	64
10	NaClâ€Promoted Hierarchically Porous Carbon Selfâ€Coâ€Doped with Iron and Nitrogen for Efficient Oxygen Reduction. ChemistrySelect, 2020, 5, 13703-13710.	1.5	1
11	A facile solvothermal synthesis of Pt _{1.2} Co/C bimetallic nanocrystals as efficient electrocatalysts for methanol oxidation and hydrogen evolution reaction. New Journal of Chemistry, 2020, 44, 5792-5799.	2.8	6
12	Electrochemical Synthesis of Cation Vacancy-Enriched Ultrathin Bimetallic Oxyhydroxide Nanoplatelets for Enhanced Water Oxidation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 25958-25966.	8.0	25
13	Iron-induced 3D nanoporous iron-cobalt oxyhydroxide on carbon cloth as a highly efficient electrode for oxygen evolution reaction. Chinese Journal of Catalysis, 2019, 40, 1540-1547.	14.0	25
14	Mesoporous Ultrathin Cobalt Oxides Nanosheets Grown on Carbon Cloth as a High-Performance Electrode for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 1977-1987.	5.1	18
15	Cobalt oxyhydroxide with highly porous structures as active and stable phase for efficient water oxidation. Electrochimica Acta, 2019, 303, 231-238.	5.2	19
16	Hollow Rh nanoparticles with nanoporous shell as efficient electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2018, 282, 853-859.	5.2	35
17	Understanding the Mechanism for Capacity Decay of V ₆ O ₁₃ -Based Lithium-Metal Polymer Batteries. ACS Applied Materials & Interfaces, 2018, 10, 29667-29674.	8.0	3
18	Large-Scale Production of V ₆ O ₁₃ Cathode Materials Assisted by Thermal Gravimetric Analysisâ€"Infrared Spectroscopy Technology. ACS Applied Materials & Samp; Interfaces, 2016, 8, 25674-25679.	8.0	12

#	Article	IF	CITATIONS
19	Controllable Synthesis of Hollow Hierarchical Palladium Nanostructures with Enhanced Activity for Proton/Hydrogen Sensing. Journal of Physical Chemistry C, 2008, 112, 338-344.	3.1	56
20	Hierarchically Structured Cobalt Oxide (Co3O4):Â The Morphology Control and Its Potential in Sensors. Journal of Physical Chemistry B, 2006, 110, 15858-15863.	2.6	339
21	Facile Synthesis of Pt Multipods Nanocrystals. Journal of Nanoscience and Nanotechnology, 2006, 6, 2031-2036.	0.9	4
22	Mass Production and High Photocatalytic Activity of ZnS Nanoporous Nanoparticles. Angewandte Chemie - International Edition, 2005, 44, 1269-1273.	13.8	558
23	Gold Hollow Nanospheres:Â Tunable Surface Plasmon Resonance Controlled by Interior-Cavity Sizes. Journal of Physical Chemistry B, 2005, 109, 7795-7800.	2.6	301
24	Niâ^'Pt Multilayered Nanowire Arrays with Enhanced Coercivity and High Remanence Ratio. Inorganic Chemistry, 2005, 44, 3013-3015.	4.0	81
25	Pt Hollow Nanospheres: Facile Synthesis and Enhanced Electrocatalysts. Angewandte Chemie - International Edition, 2004, 43, 1540-1543.	13.8	662
26	Interface Assembly Synthesis of Inorganic Composite Hollow Spheres. Journal of Physical Chemistry B, 2004, 108, 9734-9738.	2.6	62
27	Identification of the Preferential-Bonding Effect of Disubstituted Alkane Derivatives Using Scanning Tunneling Microscopy. Journal of Physical Chemistry B, 2004, 108, 620-624.	2.6	22
28	Controllable AuPt bimetallic hollow nanostructures. Chemical Communications, 2004, , 1496.	4.1	121
29	Highly Dispersed Metal Nanoparticles in Porous Anodic Alumina Films Prepared by a Breathing Process of Polyacrylamide Hydrogel. Chemistry of Materials, 2003, 15, 4332-4336.	6.7	61
30	Construction of highly durable electrocatalysts by pore confinement and anchoring effect for the oxygen reduction reaction. New Journal of Chemistry, 0, , .	2.8	2