Waldemar Jendernalik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5017642/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-Voltage Low-Power Filters with Independent ω0 and Q Tuning for Electronic Cochlea Applications. Electronics (Switzerland), 2022, 11, 534.	3.1	1
2	Starter for Voltage Boost Converter to Harvest Thermoelectric Energy for Body-Worn Sensors. Energies, 2021, 14, 4092.	3.1	2
3	Unity-Gain Zero-Offset CMOS Buffer with Improved Feedforward Path. Electronics (Switzerland), 2021, 10, 1613.	3.1	1
4	Ladder-Based Synthesis and Design of Low-Frequency Buffer-Based CMOS Filters. Electronics (Switzerland), 2021, 10, 2931.	3.1	2
5	Light-Powered Starter for Micro-Power Boost DC–DC Converter for CMOS Image Sensors. Circuits, Systems, and Signal Processing, 2020, 39, 1195-1212.	2.0	1
6	A 1-nS 1-V Sub-1-ÂμW Linear CMOS OTA with Rail-to-Rail Input for Hz-Band Sensory Interfaces. Sensors, 2020, 20, 3303.	3.8	11
7	Low-Power Receivers for Wireless Capacitive Coupling Transmission in 3-D-Integrated Massively Parallel CMOS Imager. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 2556-2565.	5.4	2
8	A High-Efficient Measurement System With Optimization Feature for Prototype CMOS Image Sensors. IEEE Transactions on Instrumentation and Measurement, 2018, 67, 2363-2372.	4.7	3
9	An Ultra-Low-Energy Analog Comparator for A/D Converters in CMOS Image Sensors. Circuits, Systems, and Signal Processing, 2017, 36, 4829-4843.	2.0	8
10	A CMOS Pixel With Embedded ADC, Digital CDS and Gain Correction Capability for Massively Parallel Imaging Array. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64, 38-49.	5.4	24
11	On analog comparators for CMOS digital pixel applications. A comparative study. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2016, 64, 271-278.	0.8	2
12	A High-Efficient Low-Voltage Rectifier for CMOS Technology. Metrology and Measurement Systems, 2016, 23, 261-268.	1.4	0
13	Prosty komparator analogowydla cyfrowego przetwornika obrazu CMOS. Przeglad Elektrotechniczny, 2015, 1, 87-90.	0.2	0
14	An Analog Sub-Miliwatt CMOS Image Sensor With Pixel-Level Convolution Processing. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60, 279-289.	5.4	33
15	A nine-input 1.25ÂmW, 34Âns CMOS analog median filter for image processing in real time. Analog Integrated Circuits and Signal Processing, 2013, 76, 233-243.	1.4	7
16	Analogue CMOS ASICs in Image Processing Systems. Metrology and Measurement Systems, 2013, 20, 613-622.	1.4	7
17	CMOS implementation of an analogue median filter for image processing in real time. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2013, 61, 725-730.	0.8	2
18	Characteristics of an Image Sensor with Early-Vision Processing Fabricated in Standard 0.35 μm Cmos Technology. Metrology and Measurement Systems, 2012, 19, 191-202.	1.4	2

#	Article	IF	CITATIONS
19	Highly linear CMOS triode transconductor for VHF applications. IET Circuits, Devices and Systems, 2012, 6, 9.	1.4	7
20	Analog CMOS processor for early vision processing with highly reduced power consumption. , 2011, , .		4
21	CMOS realisation of analogue processor for early vision processing. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2011, 59, 141-147.	0.8	15
22	Easily compensated CMOS voltage buffer. Electronics Letters, 1999, 35, 1947.	1.0	1
23	A CMOS OTA-C channel-select filter for mobile receiver. , 0, , .		1