Chiara Zurzolo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/501734/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Ways of Actin: Why Tunneling Nanotubes Are Unique Cell Protrusions. Trends in Cell Biology, 2021, 31, 130-142.	3.6	70
2	Peering into tunneling nanotubes—The path forward. EMBO Journal, 2021, 40, e105789.	3.5	63
3	α-Synuclein fibrils subvert lysosome structure and function for the propagation of protein misfolding between cells through tunneling nanotubes. PLoS Biology, 2021, 19, e3001287.	2.6	45
4	Calcium levels in the Golgi complex regulate clustering and apical sorting of GPI-APs in polarized epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
5	Tunneling nanotubes: Reshaping connectivity. Current Opinion in Cell Biology, 2021, 71, 139-147.	2.6	69
6	Patient-derived glioblastoma stem cells transfer mitochondria through tunneling nanotubes in tumor organoids. Biochemical Journal, 2021, 478, 21-39.	1.7	74
7	Seeing eye to eye: photoreceptors employ nanotubeâ€like connections for material transfer. EMBO Journal, 2021, 40, e109727.	3.5	4
8	Ischaemia impacts TNT-mediated communication between cardiac cells. Current Research in Cell Biology, 2020, 1, 100001.	2.4	8
9	Fate and propagation of endogenously formed Tau aggregates in neuronal cells. EMBO Molecular Medicine, 2020, 12, e12025.	3.3	41
10	Rab35 and its effectors promote formation of tunneling nanotubes in neuronal cells. Scientific Reports, 2020, 10, 16803.	1.6	26
11	Actin Assembly around the Shigella-Containing Vacuole Promotes Successful Infection. Cell Reports, 2020, 31, 107638.	2.9	28
12	Tunneling Nanotubes: The Fuel of Tumor Progression?. Trends in Cancer, 2020, 6, 874-888.	3.8	74
13	Evidence that tunnelling nanotube-like structures connect cells in mice. Nature, 2020, 585, 32-33.	13.7	3
14	Fine intercellular connections in development: TNTs, cytonemes, or intercellular bridges?. Cell Stress, 2020, 4, 30-43.	1.4	54
15	Clustering in the Golgi apparatus governs sorting and function of GPlâ€APs in polarized epithelial cells. FEBS Letters, 2019, 593, 2351-2365.	1.3	18
16	The best of both worlds- bringing together cell biology and infection at the Institut Pasteur. Microbes and Infection, 2019, 21, 254-262.	1.0	0
17	Human NPCs can degrade α–syn fibrils and transfer them preferentially in a cell contact-dependent manner possibly through TNT-like structures. Neurobiology of Disease, 2019, 132, 104609. 	2.1	17
18	Correlative cryo-electron microscopy reveals the structure of TNTs in neuronal cells. Nature Communications, 2019, 10, 342.	5.8	154

#	Article	IF	CITATIONS
19	The prion-like spreading of α-synuclein: From in vitro to in vivo models of Parkinson's disease. Ageing Research Reviews, 2019, 50, 89-101.	5.0	59
20	The best of both worlds—bringing together cell biology and infection at the Institut Pasteur. Genes and Immunity, 2019, 20, 426-435.	2.2	0
21	Effect of tolytoxin on tunneling nanotube formation and function. Scientific Reports, 2019, 9, 5741.	1.6	36
22	The Wnt/Ca ²⁺ pathway is involved in interneuronal communication mediated by tunneling nanotubes. EMBO Journal, 2019, 38, e101230.	3.5	50
23	Rab11a-Rab8a cascade regulate the formation of tunneling nanotubes through vesicle recycling. Journal of Cell Science, 2018, 131, .	1.2	30
24	Organization of GPI-anchored proteins at the cell surface and its physiopathological relevance. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53, 403-419.	2.3	34
25	Transfer of disrupted-in-schizophrenia 1 aggregates between neuronal-like cells occurs in tunnelling nanotubes and is promoted by dopamine. Open Biology, 2017, 7, 160328.	1.5	15
26	Regulation of sub-compartmental targeting and folding properties of the Prion-like protein Shadoo. Scientific Reports, 2017, 7, 3731.	1.6	14
27	Cell Biology of Prion Protein. Progress in Molecular Biology and Translational Science, 2017, 150, 57-82.	0.9	38
28	GPI-anchored proteins are confined in subdiffraction clusters at the apical surface of polarized epithelial cells. Biochemical Journal, 2017, 474, 4075-4090.	1.7	6
29	α-Synuclein transfer between neurons and astrocytes indicates that astrocytes play a role in degradation rather than in spreading. Acta Neuropathologica, 2017, 134, 789-808.	3.9	182
30	The spread of prion-like proteins by lysosomes and tunneling nanotubes: Implications for neurodegenerative diseases. Journal of Cell Biology, 2017, 216, 2633-2644.	2.3	105
31	Tunneling Nanotubes and Gap Junctions–Their Role in Long-Range Intercellular Communication during Development, Health, and Disease Conditions. Frontiers in Molecular Neuroscience, 2017, 10, 333.	1.4	181
32	PrPC Undergoes Basal to Apical Transcytosis in Polarized Epithelial MDCK Cells. PLoS ONE, 2016, 11, e0157991.	1.1	6
33	Differential identity of Filopodia and Tunneling Nanotubes revealed by the opposite functions of actin regulatory complexes. Scientific Reports, 2016, 6, 39632.	1.6	93
34	Astrocyte-to-neuron intercellular prion transfer is mediated by cell-cell contact. Scientific Reports, 2016, 6, 20762.	1.6	67
35	The Priority position paper: Protecting Europe's food chain from prions. Prion, 2016, 10, 165-181.	0.9	13
36	Tunneling nanotubes spread fibrillar αâ€synuclein by intercellular trafficking of lysosomes. EMBO Journal, 2016, 35, 2120-2138.	3.5	286

#	Article	IF	CITATIONS
37	Tunneling nanotubes: A possible highway in the spreading of tau and other prion-like proteins in neurodegenerative diseases. Prion, 2016, 10, 344-351.	0.9	151
38	The 37/67kDa laminin receptor (LR) inhibitor, NSC47924, affects 37/67kDa LR cell surface localization and interaction with the cellular prion protein. Scientific Reports, 2016, 6, 24457.	1.6	17
39	Drosophila cells use nanotube-like structures to transfer dsRNA and RNAi machinery between cells. Scientific Reports, 2016, 6, 27085.	1.6	36
40	Glycosylphosphatidylinositol-anchored proteins: Membrane organization and transport. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 632-639.	1.4	106
41	Identification and Characterization of Tunneling Nanotubes for Intercellular Trafficking. Current Protocols in Cell Biology, 2015, 67, 12.10.1-12.10.21.	2.3	59
42	Prion aggregates transfer through tunneling nanotubes in endocytic vesicles. Prion, 2015, 9, 125-135.	0.9	67
43	Cytosolically expressed PrP GPI-signal peptide interacts with mitochondria. Communicative and Integrative Biology, 2015, 8, e1036206.	0.6	2
44	Trafficking and degradation pathways in pathogenic conversion of prions and prion-like proteins in neurodegenerative diseases. Virus Research, 2015, 207, 146-154.	1.1	15
45	Trafficking and Membrane Organization of GPI-Anchored Proteins in Health and Diseases. Current Topics in Membranes, 2015, 75, 269-303.	O.5	35
46	The Fate of <scp>PrP GPI</scp> â€Anchor Signal Peptide is Modulated by <scp>P238S</scp> Pathogenic Mutation. Traffic, 2014, 15, 78-93.	1.3	13
47	Golgi sorting regulates organization and activity of GPI proteins at apical membranes. Nature Chemical Biology, 2014, 10, 350-357.	3.9	42
48	Defined α-synuclein prion-like molecular assemblies spreading in cell culture. BMC Neuroscience, 2014, 15, 69.	0.8	66
49	Sorting of GPI-anchored proteins from yeast to mammals – common pathways at different sites?. Journal of Cell Science, 2014, 127, 2793-801.	1.2	63
50	Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes. Journal of Cell Science, 2013, 126, 3678-85.	1.2	157
51	Myo10 is a key regulator of TNT formation in neuronal cells. Journal of Cell Science, 2013, 126, 4424-4435.	1.2	135
52	The cell biology of prion-like spread of protein aggregates: mechanisms and implication in neurodegeneration. Biochemical Journal, 2013, 452, 1-17.	1.7	126
53	Small Misfolded Tau Species Are Internalized via Bulk Endocytosis and Anterogradely and Retrogradely Transported in Neurons. Journal of Biological Chemistry, 2013, 288, 1856-1870.	1.6	436
54	Exploring the role of lipids in intercellular conduits: breakthroughs in the pipeline. Frontiers in Plant Science, 2013, 4, 504.	1.7	16

#	Article	IF	CITATIONS
55	4-hydroxytamoxifen leads to PrPSc clearance by conveying both PrPC and PrPSc to lysosomes independently of autophagy. Journal of Cell Science, 2013, 126, 1345-54.	1.2	34
56	Not on the menu. Prion, 2013, 7, 286-290.	0.9	4
57	Mycolactone activation of Wiskott-Aldrich syndrome proteins underpins Buruli ulcer formation. Journal of Clinical Investigation, 2013, 123, 1501-1512.	3.9	79
58	Wiring through tunneling nanotubes – from electrical signals to organelle transfer. Journal of Cell Science, 2012, 125, 1089-1098.	1.2	297
59	Determining the role of mononuclear phagocytes in prion neuroinvasion from the skin. Journal of Leukocyte Biology, 2012, 91, 817-828.	1.5	13
60	Cluvenone induces apoptosis via a direct target in mitochondria: a possible mechanism to circumvent chemo-resistance?. Investigational New Drugs, 2012, 30, 1841-1848.	1.2	17
61	Multifaceted Roles of Tunneling Nanotubes in Intercellular Communication. Frontiers in Physiology, 2012, 3, 72.	1.3	136
62	N-Glycosylation instead of cholesterol mediates oligomerization and apical sorting of GPI-APs in FRT cells. Molecular Biology of the Cell, 2011, 22, 4621-4634.	0.9	28
63	Doppel and PrPC co-immunoprecipitate in detergent-resistant membrane domains of epithelial FRT cells. Biochemical Journal, 2010, 425, 341-351.	1.7	16
64	Characterization of the role of dendritic cells in prion transfer to primary neurons. Biochemical Journal, 2010, 431, 189-198.	1.7	43
65	Lipid Rafts and Clathrin Cooperate in the Internalization of PrPC in Epithelial FRT Cells. PLoS ONE, 2009, 4, e5829.	1.1	48
66	Tunnelling nanotubes. Prion, 2009, 3, 94-98.	0.9	78
67	Identification of an Intracellular Site of Prion Conversion. PLoS Pathogens, 2009, 5, e1000426.	2.1	152
68	Prions hijack tunnelling nanotubes for intercellular spread. Nature Cell Biology, 2009, 11, 328-336.	4.6	539
69	Chapter 14 Mechanisms of Polarized Sorting of GPI-anchored Proteins in Epithelial Cells. The Enzymes, 2009, , 289-319.	0.7	1
70	Development of antibody fragments for immunotherapy of prion diseases. Biochemical Journal, 2009, 418, 507-515.	1.7	37
71	Coexpression of Wild-type and Mutant Prion Proteins Alters Their Cellular Localization and Partitioning into Detergent-resistant Membranes. Traffic, 2008, 9, 1101-1115.	1.3	12
72	<i>N</i> ―and <i>O</i> â€Glycans Are Not Directly Involved in the Oligomerization and Apical Sorting of GPI Proteins. Traffic, 2008, 9, 2141-2150.	1.3	22

#	Article	IF	CITATIONS
73	Gene expression profile of quinacrine-cured prion-infected mouse neuronal cells. Journal of Neurochemistry, 2008, 105, 239-250.	2.1	12
74	Different GPI-attachment signals affect the oligomerisation of GPI-anchored proteins and their apical sorting. Journal of Cell Science, 2008, 121, 4001-4007.	1.2	75
75	Selective Roles for Cholesterol and Actin in Compartmentalization of Different Proteins in the Golgi and Plasma Membrane of Polarized Cells. Journal of Biological Chemistry, 2008, 283, 29545-29553.	1.6	35
76	α-Adducin mutations increase Na/K pump activity in renal cells by affecting constitutive endocytosis: implications for tubular Na reabsorption. American Journal of Physiology - Renal Physiology, 2008, 295, F478-F487.	1.3	51
77	Characterization of the Properties and Trafficking of an Anchorless Form of the Prion Protein. Journal of Biological Chemistry, 2007, 282, 22747-22756.	1.6	36
78	Distinct v-SNAREs regulate direct and indirect apical delivery in polarized epithelial cells. Journal of Cell Science, 2007, 120, 3309-3320.	1.2	66
79	Oligomerization Is a Specific Requirement for Apical Sorting of Glycosyl-Phosphatidylinositol-Anchored Proteins but Not for Non-Raft-Associated Apical Proteins. Traffic, 2007, 8, 251-258.	1.3	54
80	Analysis of detergent-resistant membranes associated with apical and basolateral GPI-anchored proteins in polarized epithelial cells. FEBS Letters, 2006, 580, 5705-5712.	1.3	19
81	Prions: Protein Only or Something More? Overview of Potential Prion Cofactors. Journal of Molecular Neuroscience, 2006, 29, 195-214.	1.1	25
82	Detergent-resistant membrane domains but not the proteasome are involved in the misfolding of a PrP mutant retained in the endoplasmic reticulum. Journal of Cell Science, 2006, 119, 433-442.	1.2	51
83	Cell Surface Biotinylation and Other Techniques for Determination of Surface Polarity of Epithelial Monolayers. , 2006, , 241-249.		0
84	GPI-anchored proteins are directly targeted to the apical surface in fully polarized MDCK cells. Journal of Cell Biology, 2006, 172, 1023-1034.	2.3	104
85	Functional interaction between p75NTR and TrkA: the endocytic trafficking of p75NTR is driven by TrkA and regulates TrkA-mediated signalling. Biochemical Journal, 2005, 385, 233-241.	1.7	13
86	A y+LAT-1 mutant protein interferes with y+LAT-2 activity: implications for the molecular pathogenesis of lysinuric protein intolerance. European Journal of Human Genetics, 2005, 13, 628-634.	1.4	21
87	The highways and byways of prion protein trafficking. Trends in Cell Biology, 2005, 15, 102-111.	3.6	158
88	Plasma membrane and lysosomal localization of CB1 cannabinoid receptor are dependent on lipid rafts and regulated by anandamide in human breast cancer cells. FEBS Letters, 2005, 579, 6343-6349.	1.3	76
89	PrPCAssociation with Lipid Rafts in the Early Secretory Pathway Stabilizes Its Cellular Conformation. Molecular Biology of the Cell, 2004, 15, 4031-4042.	0.9	125
90	Lipids as Targeting Signals: Lipid Rafts and Intracellular Trafficking. Traffic, 2004, 5, 247-254.	1.3	319

#	Article	IF	CITATIONS
91	The Shp-1 and Shp-2, tyrosine phosphatases, are recruited on cell membrane in two distinct molecular complexes including Ret oncogenes. Cellular Signalling, 2004, 16, 847-856.	1.7	9
92	Protein oligomerization modulates raft partitioning and apical sorting of GPI-anchored proteins. Journal of Cell Biology, 2004, 167, 699-709.	2.3	218
93	The neuroendocrine protein VGF is sorted into dense-core granules and is secreted apically by polarized rat thyroid epithelial cells. Experimental Cell Research, 2004, 295, 269-280.	1.2	10
94	Sensitivity of Polarized Epithelial Cells to the Pore-Forming Toxin Aerolysin. Infection and Immunity, 2003, 71, 739-746.	1.0	49
95	Differential Recognition of a Tyrosine-Dependent Signal in the Basolateral and Endocytic Pathways of Thyroid Epithelial Cells. Endocrinology, 2002, 143, 1291-1301.	1.4	8
96	PrPCIs Sorted to the Basolateral Membrane of Epithelial Cells Independently of its Association with Rafts. Traffic, 2002, 3, 810-821.	1.3	85
97	Detergent-resistant membrane microdomains and apical sorting of GPI-anchored proteins in polarized epithelial cells. International Journal of Medical Microbiology, 2001, 291, 439-445.	1.5	17
98	Detergent Insoluble Microdomains are not Involved in Transcytosis of Polymeric Ig Receptor in FRT and MDCK Cells. Traffic, 2000, 1, 794-802.	1.3	16
99	Detergent-insoluble GPI–anchored Proteins Are Apically Sorted in Fischer Rat Thyroid Cells, but Interference with Cholesterol or Sphingolipids Differentially Affects Detergent Insolubility and Apical Sorting. Molecular Biology of the Cell, 2000, 11, 531-542.	0.9	114
100	Mechanisms of apical protein sorting in polarized thyroid epithelial cells. Biochimie, 1999, 81, 347-353.	1.3	12
101	A Requirement for Caveolin-1 and Associated Kinase Fyn in Integrin Signaling and Anchorage-Dependent Cell Growth. Cell, 1998, 94, 625-634.	13.5	675
102	Caveolin Transfection Results in Caveolae Formation but Not Apical Sorting of Glycosylphosphatidylinositol (GPI)-anchored Proteins in Epithelial Cells. Journal of Cell Biology, 1998, 140, 617-626.	2.3	130
103	Cell Surface Biotinylation Techniques. , 1994, , 185-192.		10
104	VIP21/caveolin, glycosphingolipid clusters and the sorting of glycosylphosphatidylinositol-anchored proteins in epithelial cells EMBO Journal, 1994, 13, 42-53.	3.5	154
105	VIP21/caveolin, glycosphingolipid clusters and the sorting of glycosylphosphatidylinositol-anchored proteins in epithelial cells. EMBO Journal, 1994, 13, 42-53.	3.5	54
106	Glycosphingolipid clusters and the sorting of GPI-anchored proteins in epithelial cells. Brazilian Journal of Medical and Biological Research, 1994, 27, 317-22.	0.7	2
107	Polarity signals in epithelial cells. Journal of Cell Science, 1993, 1993, 9-12.	1.2	40
108	Delivery of Na+,K(+)-ATPase in polarized epithelial cells. Science, 1993, 260, 550-552.	6.0	65

#	Article	IF	CITATIONS
109	Glycosylphosphatidylinositol-anchored proteins are preferentially targeted to the basolateral surface in Fischer rat thyroid epithelial cells Journal of Cell Biology, 1993, 121, 1031-1039.	2.3	159
110	Opposite polarity of virus budding and of viral envelope glycoprotein distribution in epithelial cells derived from different tissues Journal of Cell Biology, 1992, 117, 551-564.	2.3	68
111	Polarized secretion of plasminogen activators by epithelial cell monolayers. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1175, 1-6.	1.9	17
112	Modulation of transcytotic and direct targeting pathways in a polarized thyroid cell line EMBO Journal, 1992, 11, 2337-2344.	3.5	91
113	Modulation of transcytotic and direct targeting pathways in a polarized thyroid cell line. EMBO Journal, 1992, 11, 2337-44.	3.5	40
114	The polarized epithelial phenotype is dominant in hybrids between polarized and unpolarized rat thyroid cell lines. Journal of Cell Science, 1991, 98, 65-73.	1.2	19
115	Functional properties of normal and inverted rat thyroid follicles in suspension culture. Journal of Cellular Physiology, 1986, 126, 93-98.	2.0	10