
Katarzyna Antosz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/501669/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Industry 4.0 Technologies for Maintenance Management – An Overview. Lecture Notes in Mechanical Engineering, 2023, , 68-79.	0.4	3
2	Machining Process Time Series Data Analysis with a Decision Support Tool. Lecture Notes in Mechanical Engineering, 2022, , 14-27.	0.4	5
3	A Systematic Simulation-Based Multi-Criteria Decision-Making Approach for the Evaluation of Semi–Fully Flexible Machine System Process Parameters. Electronics (Switzerland), 2022, 11, 233.	3.1	6
4	Systems Engineering: Availability and Reliability. Applied Sciences (Switzerland), 2022, 12, 2504.	2.5	2
5	Assessing the Barriers to Industry 4.0 Implementation From a Maintenance Management Perspective - Pilot Study Results. IFAC-PapersOnLine, 2022, 55, 223-228.	0.9	12
6	Identification of the Critical Enablers for Perishable Food Supply Chain Using Deterministic Assessment Models. Applied Sciences (Switzerland), 2022, 12, 4503.	2.5	3
7	Locating Chart Choice Based on the Decision-Making Approach. Materials, 2022, 15, 3557.	2.9	5
8	Framework of machine criticality assessment with criteria interactions. Eksploatacja I Niezawodnosc, 2021, 23, 207-220.	2.0	24
9	Modelling of the Effect of Slide Burnishing on the Surface Roughness of 42CrMo4 Steel Shafts. Lecture Notes in Mechanical Engineering, 2021, , 415-424.	0.4	1
10	Fatigue Reliability Analysis Method of Reactor Structure Considering Cumulative Effect of Irradiation. Materials, 2021, 14, 801.	2.9	3
11	Modelling the Influence of Slide Burnishing Parameters on the Surface Roughness of Shafts Made of 42CrMo4 Heat-Treatable Steel. Materials, 2021, 14, 1175.	2.9	13
12	Application of MICMAC, Fuzzy AHP, and Fuzzy TOPSIS for Evaluation of the Maintenance Factors Affecting Sustainable Manufacturing. Energies, 2021, 14, 1436.	3.1	47
13	Failure-based sealing reliability analysis considering dynamic interval and hybrid uncertainties. Eksploatacja I Niezawodnosc, 2021, 23, 278-284.	2.0	3
14	Application of machine learning and rough set theory in lean maintenance decision support system development. Eksploatacja I Niezawodnosc, 2021, 23, 695-708.	2.0	20
15	Intelligent Predictive Decision Support System for the Maintenance Service Provider. Lecture Notes in Mechanical Engineering, 2021, , 3-13.	0.4	Ο
16	Integrating advanced measurement and signal processing for reliability decision-making. Eksploatacja I Niezawodnosc, 2021, 23, 777-787.	2.0	14
17	Influence of Contamination of Gear Oils in Relation to Time of Operation on Their Lubricity. Applied Sciences (Switzerland), 2021, 11, 11835.	2.5	5
18	The Use of Artificial Intelligence Methods to Assess the Effectiveness of Lean Maintenance Concept Implementation in Manufacturing Enterprises. Applied Sciences (Switzerland), 2020, 10, 7922.	2.5	35

KATARZYNA ANTOSZ

#	Article	IF	CITATIONS
19	Predicting the Error of a Robot's Positioning Repeatability with Artificial Neural Networks. Advances in Intelligent Systems and Computing, 2020, , 41-48.	0.6	Ο
20	The Use of Intelligent Systems to Support the Decision-Making Process in Lean Maintenance Management. IFAC-PapersOnLine, 2019, 52, 148-153.	0.9	24
21	Spare parts' criticality assessment and prioritization for enhancing manufacturing systems' availability and reliability. Journal of Manufacturing Systems, 2019, 50, 212-225.	13.9	23
22	Forecasting the Mountability Level of a Robotized Assembly Station. Advances in Intelligent Systems and Computing, 2019, , 175-184.	0.6	1
23	Overall Equipment Effectiveness: Analysis of Different Ways of Calculations and Improvements. Lecture Notes in Mechanical Engineering, 2018, , 45-55.	0.4	9
24	Comparative Analysis of the Implementation of the SMED Method on Selected Production Stands. Tehnicki Vjesnik, 2018, 25, .	0.2	4
25	An Intelligent System Supporting a Forklifts Maintenance Process. Advances in Intelligent Systems and Computing, 2018, , 13-22.	0.6	3
26	Maintenance – identification and analysis of the competency gap. Eksploatacja I Niezawodnosc, 2018, 20, 484-494.	2.0	41
27	An Intelligent System Supporting a Maintenance Process of Specialised Medical Equipment. Advances in Intelligent Systems and Computing, 2018, , 23-32.	0.6	2
28	Possibilities of Maintenance Service Process Analyses and Improvement Through Six Sigma, Lean and Industry 4.0 Implementation. IFIP Advances in Information and Communication Technology, 2018, , 465-475.	0.7	5
29	Development of a Risk Matrix and Extending the Risk-based Maintenance Analysis with Fuzzy Logic. Procedia Engineering, 2017, 182, 602-610.	1.2	44
30	Lean Philosophy Implementation in SMEs – Study Results. Procedia Engineering, 2017, 182, 25-32.	1.2	46
31	Risk-Based Maintenance Assessment in the Manufacturing Industry: Minimisation of Suboptimal Prioritisation. Management and Production Engineering Review, 2017, 8, 38-45.	1.4	13
32	Development of a risk matrix for the assessment of maintenance suppliers: A study based on empirical knowledge. IFAC-PapersOnLine, 2017, 50, 9026-9031.	0.9	3
33	Use of lean management philosophy in health sector: A VSM based case study. , 2016, , .		2
34	Machinery classification and prioritization: Empirical models and AHP based approach for effective preventive maintenance. , 2016, , .		11
35	Classification of spare parts as the element of a proper realization of the machine maintenance process and logistics - case study. IFAC-PapersOnLine, 2016, 49, 1389-1393.	0.9	13
36	Investigation of process approach implementation in manufacturing firms: A methodology for		4

assessing process excellence level. , 2015, , .

#	ARTICLE	IF	CITATIONS
37	Evaluation measures of machine operation effectiveness in large enterprises: study results. Eksploatacja I Niezawodnosc, 2015, 17, 107-117.	2.0	18
38	Development of an empirical formula for machine classification: Prioritization of maintenance tasks. Safety Science, 2014, 63, 34-41.	4.9	27
39	Deriving an empirical model for machinery prioritization: Mechanical systems maintenance. , 2013, , .		3
40	Safena and QBPM. , 2011, , .		0