Juan Jesus Gallardo Bernal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5016587/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New insights into organic–inorganic hybrid perovskite CH ₃ NH ₃ PbI ₃ nanoparticles. An experimental and theoretical study of doping in Pb ²⁺ sites with Sn ²⁺ , Sr ²⁺ , Cd ²⁺ and Ca ²⁺ . Nanoscale, 2015, 7, 6216-6229.	2.8	216
2	A route for the synthesis of Cu-doped TiO2 nanoparticles with a very low band gap. Chemical Physics Letters, 2013, 571, 49-53.	1.2	121
3	On the enhancement of heat transfer fluid for concentrating solar power using Cu and Ni nanofluids: An experimental and molecular dynamics study. Nano Energy, 2016, 27, 213-224.	8.2	66
4	Ag-based nanofluidic system to enhance heat transfer fluids for concentrating solar power: Nano-level insights. Applied Energy, 2017, 194, 19-29.	5.1	54
5	Investigation of enhanced thermal properties in NiO-based nanofluids for concentrating solar power applications: A molecular dynamics and experimental analysis. Applied Energy, 2018, 211, 677-688.	5.1	51
6	Dramatically enhanced thermal properties for TiO2-based nanofluids for being used as heat transfer fluids in concentrating solar power plants. Renewable Energy, 2018, 119, 809-819.	4.3	44
7	Homeopathic Perovskite Solar Cells: Effect of Humidity during Fabrication on the Performance and Stability of the Device. Journal of Physical Chemistry C, 2018, 122, 5341-5348.	1.5	43
8	Reversible Formation of Gold Halides in Singleâ€Crystal Hybridâ€Perovskite/Au Interface upon Biasing and Effect on Electronic Carrier Injection. Advanced Functional Materials, 2019, 29, 1900881.	7.8	40
9	Revealing the role of Pb ²⁺ in the stability of organic–inorganic hybrid perovskite CH ₃ NH ₃ Pb _{1â°'x} Cd _x I ₃ : an experimental and theoretical study. Physical Chemistry Chemical Physics, 2015, 17, 23886-23896.	1.3	38
10	Preparation of Au nanoparticles in a non-polar medium: obtaining high-efficiency nanofluids for concentrating solar power. An experimental and theoretical perspective. Journal of Materials Chemistry A, 2017, 5, 12483-12497.	5.2	34
11	The impact of Pd on the light harvesting in hybrid organic-inorganic perovskite for solar cells. Nano Energy, 2017, 34, 141-154.	8.2	28
12	MoS ₂ nanosheets <i>vs.</i> nanowires: preparation and a theoretical study of highly stable and efficient nanofluids for concentrating solar power. Journal of Materials Chemistry A, 2018, 6, 14919-14929.	5.2	24
13	Visibleâ€Lightâ€Enhanced Photocatalytic Activity of Totally Inorganic Halideâ€Based Perovskite. ChemistrySelect, 2018, 3, 10226-10235.	0.7	21
14	Towards the improvement of the global efficiency of concentrating solar power plants by using Pt-based nanofluids: The internal molecular structure effect. Applied Energy, 2018, 228, 2262-2274.	5.1	16
15	A Solvothermal Synthesis of TiO2 Nanoparticles in a Non-Polar Medium to Prepare Highly Stable Nanofluids with Improved Thermal Properties. Nanomaterials, 2018, 8, 816.	1.9	14
16	TiO2and pyrochlore Tm2Ti2O7based semiconductor as a photoelectrode for dye-sensitized solar cells. Journal Physics D: Applied Physics, 2015, 48, 145102.	1.3	12
17	Dealing with Climate Parameters in the Fabrication of Perovskite Solar Cells under Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2020, 8, 7132-7138.	3.2	11
18	MoS2/Cu/TiO2 nanoparticles: synthesis, characterization and effect on photocatalytic decomposition of methylene blue in water under visible light. Water Science and Technology, 2018, 2017, 184-193.	1.2	10

#	Article	IF	CITATIONS
19	Interfacial Passivation of Perovskite Solar Cells by Reactive Ion Scavengers. ACS Applied Energy Materials, 2021, 4, 1078-1084.	2.5	9
20	Micro-Raman Spectroscopy for the Determination of Local Temperature Increases in TiO2 Thin Films due to the Effect of Radiation. Applied Spectroscopy, 2016, 70, 1128-1136.	1.2	8
21	The Role of Surfactants in the Stability of NiO Nanofluids: An Experimental and DFT Study. ChemPhysChem, 2017, 18, 346-356.	1.0	8
22	Hybrid Perovskite, CH ₃ NH ₃ PbI ₃ , for Solar Applications: An Experimental and Theoretical Analysis of Substitution in A and B Sites. Journal of Nanomaterials, 2017, 2017, 1-10.	1.5	8
23	Experimental and theoretical analysis of nanofluids based on high temperature-heat transfer fluid with enhanced thermal properties. EPJ Applied Physics, 2017, 78, 10901.	0.3	6
24	Unraveling the role of the base fluid arrangement in metal-nanofluids used to enhance heat transfer in concentrating solar power plants. Journal of Molecular Liquids, 2018, 252, 271-278.	2.3	6
25	M(Al,Ni)-TiO ₂ -Based Photoanode for Photoelectrochemical Solar Cells. Zeitschrift Fur Physikalische Chemie, 2018, 232, 559-577.	1.4	6
26	Tuning the structural, optical and photoluminescence properties of hybrid perovskite quantum dots by A-site doping. Applied Materials Today, 2020, 18, 100488.	2.3	6
27	On-line thermal dependence study of the main solar cell electrical photoconversion parameters using low thermal emission lamps. Review of Scientific Instruments, 2012, 83, 063105.	0.6	5
28	Incorporation of Al-(hydr)oxide species onto the surface of TiO 2 nanoparticles: Improving the open-circuit voltage in dye-sensitized solar cells. Thin Solid Films, 2015, 578, 167-173.	0.8	5
29	Intrinsic stability analysis of perovskite nanopowder with double and triple cation in a site, FAxMA(1-x)PbI3 and FAxCsyMA(1-x-y)PbI3. Materials Research Bulletin, 2019, 119, 110528.	2.7	5
30	Evaluation method for pore size distribution by using capillary liquid suction tests. Journal of Porous Materials, 2010, 17, 207-215.	1.3	4
31	Stability and Thermal Properties Study of Metal Chalcogenide-Based Nanofluids for Concentrating Solar Power. Energies, 2019, 12, 4632.	1.6	4
32	Instrumental development for measuring sorption properties of porous materials. Review of Scientific Instruments, 2006, 77, 065107.	0.6	3
33	Estimating the temperature of the active layer of dye sensitised solar cells by using a "second-order lumped parameter mathematical model― Solar Energy, 2016, 137, 80-89.	2.9	2
34	The effect of a complex A-site cation and mixed halides in the emission properties of perovskite quantum dots. Journal of Molecular Liquids, 2020, 314, 113674.	2.3	2
35	Experimental study of precipitating systems; computerised analysis of the optical transmittance and associated noise. Computers & Chemistry, 2001, 25, 447-457.	1.2	1
36	A Study of Overheating of Thermostatically Controlled TiO ₂ Thin Films by Using Raman Spectroscopy. ChemPhysChem, 2015, 16, 3949-3958.	1.0	0