Adam D Durbin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5016013/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	EP300 Selectively Controls the Enhancer Landscape of <i>MYCN</i> -Amplified Neuroblastoma. Cancer Discovery, 2022, 12, 730-751.	9.4	64
2	SIX1 reprograms myogenic transcription factors to maintain the rhabdomyosarcoma undifferentiated state. Cell Reports, 2022, 38, 110323.	6.4	12
3	Intrinsic transcriptional heterogeneity in neuroblastoma guides mechanistic and therapeutic insights. Cell Reports Medicine, 2022, 3, 100632.	6.5	12
4	Targeting ganglioneuromas with mTOR inhibitors. Molecular and Cellular Oncology, 2021, 8, 1856621.	0.7	2
5	A first-generation pediatric cancer dependency map. Nature Genetics, 2021, 53, 529-538.	21.4	76
6	Lysine Demethylase 5A Is Required for MYC-Driven Transcription in Multiple Myeloma. Blood Cancer Discovery, 2021, 2, 370-387.	5.0	19
7	A Resident-Led Virtual Journal Club to Educate Pediatric Residents About Coronavirus Disease 2019. Academic Pediatrics, 2021, 21, 759-761.	2.0	1
8	Abstract 2481: Time-resolved transcriptome analysis of murine TH-MYCN driven neuroblastoma identifies MEIS2 as early initiating factor and novel core gene regulatory circuitry constituent. , 2021,		0
9	MEIS2 Is an Adrenergic Core Regulatory Transcription Factor Involved in Early Initiation of TH-MYCN-Driven Neuroblastoma Formation. Cancers, 2021, 13, 4783.	3.7	12
10	Retinoic acid rewires the adrenergic core regulatory circuitry of childhood neuroblastoma. Science Advances, 2021, 7, eabe0834.	10.3	22
11	ARID1A loss in neuroblastoma promotes the adrenergic-to-mesenchymal transition by regulating enhancer-mediated gene expression. Science Advances, 2020, 6, eaaz3440.	10.3	47
12	Ganglioneuromas are driven by activated AKT and can be therapeutically targeted with mTOR inhibitors. Journal of Experimental Medicine, 2020, 217, .	8.5	12
13	Synthetic Lethal Interaction between the ESCRT Paralog Enzymes VPS4A and VPS4B in Cancers Harboring Loss of Chromosome 18q or 16q. Cell Reports, 2020, 33, 108493.	6.4	28
14	Using Chemical Epigenetics to Target Cancer. Molecular Cell, 2020, 78, 1086-1095.	9.7	40
15	LIN28B regulates transcription and potentiates MYCN-induced neuroblastoma through binding to ZNF143 at target gene promotors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16516-16526.	7.1	31
16	Mechanisms underlying synergy between DNA topoisomerase I-targeted drugs and mTOR kinase inhibitors in NF1-associated malignant peripheral nerve sheath tumors. Oncogene, 2019, 38, 6585-6598.	5.9	16
17	ASCL1 is a MYCN- and LMO1-dependent member of the adrenergic neuroblastoma core regulatory circuitry. Nature Communications, 2019, 10, 5622.	12.8	56
18	Diffusion-Weighted Imaging Changes in a Child With Posterior Ischemic Optic Neuropathy. Pediatric Neurology, 2018, 84, 49-52.	2.1	6

Adam D Durbin

#	Article	IF	CITATIONS
19	<i>MYC</i> Drives a Subset of High-Risk Pediatric Neuroblastomas and Is Activated through Mechanisms Including Enhancer Hijacking and Focal Enhancer Amplification. Cancer Discovery, 2018, 8, 320-335.	9.4	172
20	Selective gene dependencies in MYCN-amplified neuroblastoma include the core transcriptional regulatory circuitry. Nature Genetics, 2018, 50, 1240-1246.	21.4	199
21	The NOTCH1/SNAIL1/MEF2C Pathway Regulates Growth and Self-Renewal in Embryonal Rhabdomyosarcoma. Cell Reports, 2017, 19, 2304-2318.	6.4	53
22	Vitamin B12 Deficiency Presenting with Neurological Dysfunction in an Adolescent. Pediatric Neurology, 2016, 62, 66-70.	2.1	5
23	Malignant Peripheral Nerve Sheath Tumors. Advances in Experimental Medicine and Biology, 2016, 916, 495-530.	1.6	18
24	Abstract 2007: Transcriptional regulatory program controlled by the oncogenic transcription factor LMO1 in neuroblastoma. Cancer Research, 2016, 76, 2007-2007.	0.9	1
25	Genetic predisposition to neuroblastoma mediated by a LMO1 super-enhancer polymorphism. Nature, 2015, 528, 418-421.	27.8	263
26	An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science, 2014, 346, 1373-1377.	12.6	665
27	Recurrent Focal Copy-Number Changes and Loss of Heterozygosity Implicate Two Noncoding RNAs and One Tumor Suppressor Gene at Chromosome 3q13.31 in Osteosarcoma. Cancer Research, 2010, 70, 160-171.	0.9	152
28	The oncogenic and growth-suppressive functions of the integrin-linked kinase are distinguished by JNK1 expression in human cancer cells. Cell Cycle, 2010, 9, 1951-1959.	2.6	4
29	Abstract 3400: Recurrent focal copy-number changes and loss-of-heterozygosity implicate two non-coding RNAs and one tumor-suppressor gene at chromosome 3q13.31 in osteosarcoma. , 2010, , .		1
30	Oncogenic ILK, tumor suppression and all that JNK. Cell Cycle, 2009, 8, 4060-4066.	2.6	17
31	Expression of Insulin-Like Growth Factor Pathway Proteins in Rhabdomyosarcoma: IGF-2 Expression is Associated with Translocation-Negative Tumors. Pediatric and Developmental Pathology, 2009, 12, 127-135.	1.0	34
32	JNK1 determines the oncogenic or tumor-suppressive activity of the integrin-linked kinase in human rhabdomyosarcoma. Journal of Clinical Investigation, 2009, 119, 1558-70.	8.2	36
33	The CXCR4-SDF1α axis is a critical mediator of rhabdomyosarcoma metastatic signaling induced by bone marrow stroma. Clinical and Experimental Metastasis, 2008, 25, 1-10.	3.3	28
34	The Estrogen Receptor Pathway in Rhabdomyosarcoma: A Role for Estrogen Receptor-β in Proliferation and Response to the Antiestrogen 4′OH-Tamoxifen. Cancer Research, 2008, 68, 3476-3485.	0.9	21
35	OPPOSING FUNCTIONS FOR A PROTEIN KINASE: A JNK1 DEPENDENT SWITCH DETERMINES THE ONCOGENIC OR TUMOR SUPPRESSIVE ACTIVITY OF ILK INRHABDOMYOSARCOMA. Clinical and Investigative Medicine, 2008, 31, 9.	0.6	0
36	Nitric oxide promotes in vitro interstitial cell heart valve repair. Cardiovascular Pathology, 2005, 14, 12-18.	1.6	20

#	Article	IF	CITATIONS
37	Advances towards understanding heart valve response to injury. Cardiovascular Pathology, 2002, 11, 69-77.	1.6	107