Thomas Luxbacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5015937/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of membrane fouling by (pretreated) surface water on rejection of pharmaceutically active compounds (PhACs) by nanofiltration membranes. Journal of Membrane Science, 2009, 330, 90-103.	8.2	152
2	Effect of surface structure on protein adsorption to biphasic calcium-phosphate ceramics in vitro and in vivo. Acta Biomaterialia, 2009, 5, 1311-1318.	8.3	121
3	Interpretation of Electrokinetic Measurements with Porous Films: Role of Electric Conductance and Streaming Current within Porous Structure. Langmuir, 2010, 26, 10882-10889.	3.5	80
4	Dehydration and Rehydration Processes in Microporous Rare-Earth Dicarboxylates: A Study by Thermogravimetry, Thermodiffractometry and Optical Spectroscopy. Journal of Solid State Chemistry, 1999, 145, 580-586.	2.9	78
5	Indirect determination of zeta potential at high ionic strength: Specific application to semipermeable polymeric membranes. Journal of Membrane Science, 2015, 478, 58-64.	8.2	69
6	Modification of ceramic microfilters with colloidal zirconia to promote the adsorption of viruses from water. Water Research, 2008, 42, 1726-1734.	11.3	67
7	On the role of Nb-related sites of an oxidized β-TiNb alloy surface in its interaction with osteoblast-like MG-63 cells. Materials Science and Engineering C, 2013, 33, 1636-1645.	7.3	63
8	Biocompatibility and sp3/sp2 ratio of laser created DLC films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 169, 89-93.	3.5	62
9	Chitosan/glycosaminoglycan scaffolds for skin reparation. Carbohydrate Polymers, 2019, 220, 219-227.	10.2	59
10	Implications of humic acid, inorganic carbon and speciation on fluoride retention mechanisms in nanofiltration and reverse osmosis. Journal of Membrane Science, 2017, 528, 82-94.	8.2	50
11	Electrokinetic characterization of flat sheet membranes by streaming current measurement. Desalination, 2006, 199, 376-377.	8.2	47
12	Organic fouling control through magnetic ion exchangeâ€nanofiltration (MIEXâ€NF) in water treatment. Journal of Membrane Science, 2018, 549, 474-485.	8.2	47
13	Nanofiltration membranes modified with alkoxysilanes: Surface characterization using zeta-potential. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 422, 110-117.	4.7	46
14	MS2 bacteriophage inactivation using a N-doped TiO2-coated photocatalytic membrane reactor: Influence of water-quality parameters. Chemical Engineering Journal, 2018, 354, 995-1006.	12.7	42
15	Morphological zeta-potential variation of nanoporous anodic alumina layers and cell adherence. Acta Biomaterialia, 2014, 10, 968-974.	8.3	40
16	Zeta potential determination of polymeric materials using two differently designed measuring cells of an electrokinetic analyzer. Acta Chimica Slovenica, 2010, 57, 700-6.	0.6	40
17	Influence of O2 and CO2 plasma treatment on the deposition of chitosan onto polyethylene terephthalate (PET) surfaces. International Journal of Adhesion and Adhesives, 2014, 48, 168-176.	2.9	39
18	Nanocellulose production from recycled paper mill sludge using ozonation pretreatment followed by recyclable maleic acid hydrolysis. Carbohydrate Polymers, 2019, 216, 343-351.	10.2	39

THOMAS LUXBACHER

#	Article	IF	CITATIONS
19	Electrical activity of ferroelectric biomaterials and its effects on the adhesion, growth and enzymatic activity of human osteoblast-like cells. Journal Physics D: Applied Physics, 2016, 49, 175403.	2.8	38
20	<title>Nanoimprint lithography with a commercial 4-in. bond system for hot embossing</title> . , 2001, 4343, 427.		34
21	Antibacterial properties of Ag-doped hydroxyapatite layers prepared by PLD method. Applied Physics A: Materials Science and Processing, 2010, 101, 615-620.	2.3	34
22	Physicochemical Characterization of Packaging Foils Coated by Chitosan and Polyphenols Colloidal Formulations. International Journal of Molecular Sciences, 2020, 21, 495.	4.1	34
23	Properties of Au nanolayer sputtered on polyethyleneterephthalate. Materials Letters, 2010, 64, 611-613.	2.6	33
24	Solar Photocatalytic Degradation of Trace Organic Pollutants in Water by Bi(0)-Doped Bismuth Oxyhalide Thin Films. ACS Omega, 2018, 3, 10858-10865.	3.5	27
25	Zeta Potential of Photochemically Modified Polymer Surfaces. , 0, , 54-61.		26
26	Diamond/graphite content and biocompatibility of DLC films fabricated by PLD. Applied Physics A: Materials Science and Processing, 2010, 101, 579-583.	2.3	26
27	Impact of Porosity and Electrolyte Composition on the Surface Charge of Hydroxyapatite Biomaterials. ACS Applied Materials & Interfaces, 2016, 8, 908-917.	8.0	23
28	Effect of Chitin Nanofibrils on Biocompatibility and Bioactivity of the Chitosan-Based Composite Film Matrix Intended for Tissue Engineering. Materials, 2019, 12, 1874.	2.9	23
29	Effective Removal of Acid Dye in Synthetic and Silk Dyeing Effluent: Isotherm and Kinetic Studies. ACS Omega, 2022, 7, 118-128.	3.5	22
30	Effect of surface wettability and charge on protein adsorption onto implantable alginateâ€chitosanâ€alginate microcapsule surfaces. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1357-1365.	4.0	21
31	Time-dependent effects on physicochemical and surface properties of PHBV fibers and films in relation to their interactions with fibroblasts. Applied Surface Science, 2021, 545, 148983.	6.1	21
32	A study on the performance of hyaluronic acid immobilized chitosan film. Biomedical Materials (Bristol), 2009, 4, 035009.	3.3	18
33	Relationship of Surface Hydrophilicity, Charge, and Roughness of PET Foils Stimulated by Incipient Alkaline Hydrolysis. ACS Applied Materials & Interfaces, 2010, 2, 2116-2127.	8.0	18
34	Fast cross relaxation in lanthanide hexachloroelpasolites: application of the shell model. Chemical Physics Letters, 1995, 241, 103-108.	2.6	15
35	Applicability of electro-osmotic flow for the analysis of the surface zeta potential. RSC Advances, 2020, 10, 6777-6789.	3.6	15
36	Competitive cross-relaxation and energy transfer within the shell model: The case of Cs2NaSmxEuyY1 â°' x â° yCl6. Journal of Luminescence, 1997, 71, 177-188.	3.1	14

THOMAS LUXBACHER

#	Article	IF	CITATIONS
37	Cross relaxation from the4G5/2state of Sm3+in Cs2NaSmxY1-xCl6and Cs2NaSmxGd1-xCl6: a comparison of multipole-multipole and anisotropic dielectric shell models. Journal of Physics Condensed Matter, 1995, 7, 9683-9692.	1.8	12
38	Two-photon spectroscopy of samarium(III) in the elpasolite Cs2NaYCl6:Sm3+. Journal of Physics Condensed Matter, 1999, 11, 7867-7879.	1.8	12
39	Assessing the quality of raw cotton knitted fabrics by their streaming potential coefficients. Cellulose, 2014, 21, 3829-3839.	4.9	11
40	Catching Speedy Gonzales: Driving forces for Protein Film Formation on Silicone Rubber Tubing During Pumping. Journal of Pharmaceutical Sciences, 2022, 111, 1577-1586.	3.3	10
41	Investigating the time-dependent zeta potential of wood surfaces. Journal of Colloid and Interface Science, 2018, 518, 165-173.	9.4	9
42	Polysaccharide-Based Bilayer Coatings for Biofilm-Inhibiting Surfaces of Medical Devices. Materials, 2021, 14, 4720.	2.9	9
43	Charging behaviour at the carbonate rockâ€water interface in lowâ€salinity waterflooding: Estimation of zeta potential in highâ€salinity brines. Canadian Journal of Chemical Engineering, 2022, 100, 1226-1234.	1.7	9
44	Electrokinetics in undeveloped flows. Journal of Colloid and Interface Science, 2013, 410, 195-201.	9.4	8
45	Evolution of calcite surfaces upon thermal decomposition, characterized by electrokinetics, in-situ XRD, and SEM. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624, 126761.	4.7	8
46	Vibronic intensities in the optical absorption spectra of Pr3+ in Cs2NaPrxY1â^'xCl6: concentration and temperature dependence. Chemical Physics Letters, 1995, 232, 571-575.	2.6	7
47	Temperature dependence of luminescence decay from the state of Sm3+ in Cs2NaSmxY1 â^' xCl6 and Cs2NaSmxEuyY1 â^' x â^' yCl6. Journal of Luminescence, 1997, 71, 313-319.	3.1	6
48	Influence of the structure of polymer fiber composites on the analysis of the zeta potential. Journal of Applied Polymer Science, 2018, 135, 46227.	2.6	6
49	Analytical Assessment of the Thermal Decomposition of Cotton-modacryl Knitted Fabrics. Fibres and Textiles in Eastern Europe, 2017, 25, 59-67.	0.5	6
50	Spectroscopy of hexanitritoelpasolite crystals: the effect of the rare-earth ion on the progressions in the nitrite vibration. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1998, 54, 2045-2049.	3.9	5
51	Electrokinetic behaviour of porous TiO2-coated implants. Journal of Materials Science: Materials in Medicine, 2015, 26, 191.	3.6	5
52	Insight into the Surface Properties of Wood Fiber-Polymer Composites. Polymers, 2021, 13, 1535.	4.5	5
53	Energy transfer in high-symmetry crystals. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1998, 54, 2027-2034.	3.9	4
54	Theoretical manifestation of the shell model for energy transfer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1998, 54, 2099-2103.	3.9	4

THOMAS LUXBACHER

#	Article	IF	CITATIONS
55	Adsorptive Removal of Heavy Metal Ions by Waste Wool. Journal of Natural Fibers, 2022, 19, 14490-14503.	3.1	4
56	Photolithography on micromachined 3D surfaces using spray coating technology of photoresist. , 2001, 4404, 245.		3
57	Competitive cross-relaxation and energy transfer in Cs 2 NaSm x Eu v Gd 1-x-v C l6. , 1997, , .		1
58	Cross relaxation from the4G5/2 state of Sm3+ in Cs2NaSmxY1â^'xCl6. Journal of Applied Spectroscopy, 1995, 62, 820-826.	0.7	0
59	Vibronic intensities in the optical absorption spectra of Pr3+ in Cs2NaPrxY1â [~] xCl6: concentration and temperature dependence. Journal of Applied Spectroscopy, 1995, 62, 827-831.	0.7	0
60	Up-conversion and ligand-metal coupling in Cs 2 NaEr(NO 2) 6. , 1997, , .		0
61	The angular dependence of the multipole-multipole interaction for energy transfer. Theoretical Chemistry Accounts, 1999, 103, 105-108.	1.4	0
62	Electrokinetic properties of natural fibres. , 2020, , 323-353.		0
63	Temperature Dependence of Luminescence Decay from the4G5/2State of Sm3+in Cs2NaSmxY1-xCl6and Cs2NaSmxEuyY1-x-yCl6. Acta Physica Polonica A, 1996, 90, 307-313.	0.5	Ο