
Zhixiang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5015755/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Cellular and Subcellular Organization of the Glucosinolate–Myrosinase System against Herbivores and Pathogens. International Journal of Molecular Sciences, 2022, 23, 1577.	4.1	23
2	Specialized endoplasmic reticulumâ€derived vesicles in plants: Functional diversity, evolution, and biotechnological exploitation. Journal of Integrative Plant Biology, 2022, 64, 821-835.	8.5	6
3	The Mediator Complex: A Central Coordinator of Plant Adaptive Responses to Environmental Stresses. International Journal of Molecular Sciences, 2022, 23, 6170.	4.1	14
4	Chloroplasts Protein Quality Control and Turnover: A Multitude of Mechanisms. International Journal of Molecular Sciences, 2022, 23, 7760.	4.1	6
5	Application of exogenous salicylic acid reduces Cd toxicity and Cd accumulation in rice. Ecotoxicology and Environmental Safety, 2021, 207, 111198.	6.0	28
6	Salicylic acid application alleviates cadmium accumulation in brown rice by modulating its shoot to grain translocation in rice. Chemosphere, 2021, 263, 128034.	8.2	21
7	Expansion and Functional Diversification of TFIIB-Like Factors in Plants. International Journal of Molecular Sciences, 2021, 22, 1078.	4.1	5
8	Cargo Recognition and Function of Selective Autophagy Receptors in Plants. International Journal of Molecular Sciences, 2021, 22, 1013.	4.1	16
9	Regulation and Function of Defense-Related Callose Deposition in Plants. International Journal of Molecular Sciences, 2021, 22, 2393.	4.1	88
10	Two ubiquitin-associated ER proteins interact with COPT copper transporters and modulate their accumulation. Plant Physiology, 2021, 187, 2469-2484.	4.8	8
11	Biosynthesis and Roles of Salicylic Acid in Balancing Stress Response and Growth in Plants. International Journal of Molecular Sciences, 2021, 22, 11672.	4.1	36
12	Broad and Complex Roles of NBR1-Mediated Selective Autophagy in Plant Stress Responses. Cells, 2020, 9, 2562.	4.1	24
13	Coordination and Crosstalk between Autophagosome and Multivesicular Body Pathways in Plant Stress Responses. Cells, 2020, 9, 119.	4.1	17
14	The role of HDâ€Zip class I transcription factors in plant response to abiotic stresses. Physiologia Plantarum, 2019, 167, 516-525.	5.2	57
15	A Family of NAI2-Interacting Proteins in the Biogenesis of the ER Body and Related Structures. Plant Physiology, 2019, 180, 212-227.	4.8	10
16	Arabidopsis Endoplasmic Reticulum-Localized UBAC2 Proteins Interact with PAMP-INDUCED COILED-COIL to Regulate Pathogen-Induced Callose Deposition and Plant Immunity. Plant Cell, 2019, 31, 153-171.	6.6	23
17	The role of C2H2 zinc finger proteins in plant responses to abiotic stresses. Physiologia Plantarum, 2019, 165, 690-700.	5.2	111
18	Soil cadmium extraction in Chinese cabbage and cabbage intercropping. Ciencia Rural, 2019, 49, .	0.5	2

2

#	Article	IF	CITATIONS
19	Plastid Translation Elongation Factor Tu Is Prone to Heat-Induced Aggregation Despite Its Critical Role in Plant Heat Tolerance. Plant Physiology, 2018, 176, 3027-3045.	4.8	41
20	Dicot-specific ATG8-interacting ATI3 proteins interact with conserved UBAC2 proteins and play critical roles in plant stress responses. Autophagy, 2018, 14, 487-504.	9.1	55
21	Biogenesis and Function of Multivesicular Bodies in Plant Immunity. Frontiers in Plant Science, 2018, 9, 979.	3.6	36
22	MicroRNA166 Modulates Cadmium Tolerance and Accumulation in Rice. Plant Physiology, 2018, 177, 1691-1703.	4.8	125
23	ABNORMAL INFLORESCENCE MERISTEM1 Functions in Salicylic Acid Biosynthesis to Maintain Proper Reactive Oxygen Species Levels for Root Meristem Activity in Rice. Plant Cell, 2017, 29, 560-574.	6.6	112
24	MicroRNA268 Overexpression Affects Rice Seedling Growth under Cadmium Stress. Journal of Agricultural and Food Chemistry, 2017, 65, 5860-5867.	5.2	44
25	Characterization of Soybean WRKY Gene Family and Identification of Soybean WRKY Genes that Promote Resistance to Soybean Cyst Nematode. Scientific Reports, 2017, 7, 17804.	3.3	92
26	Expression and Functional Analysis of a Novel Group of Legume-specific WRKY and Exo70 Protein Variants from Soybean. Scientific Reports, 2016, 6, 32090.	3.3	20
27	Structural and Functional Characterization of the VQ Protein Family and VQ Protein Variants from Soybean. Scientific Reports, 2016, 6, 34663.	3.3	26
28	Functional analysis of structurally related soybean GmWRKY58 and GmWRKY76 in plant growth and development. Journal of Experimental Botany, 2016, 67, 4727-4742.	4.8	50
29	Innovation of a Regulatory Mechanism Modulating Semi-determinate Stem Growth through Artificial Selection in Soybean. PLoS Genetics, 2016, 12, e1005818.	3.5	48
30	Guard cell hydrogen peroxide and nitric oxide mediate elevated <scp>CO</scp> ₂ â€induced stomatal movement in tomato. New Phytologist, 2015, 208, 342-353.	7.3	95
31	A Critical Role of Lyst-Interacting Protein5, a Positive Regulator of Multivesicular Body Biogenesis, in Plant Responses to Heat and Salt Stresses. Plant Physiology, 2015, 169, 497-511.	4.8	40
32	SCARECROW-LIKE15 interacts with HISTONE DEACETYLASE19 and is essential for repressing the seed maturation programme. Nature Communications, 2015, 6, 7243.	12.8	58
33	Characterization of the promoter and extended C-terminal domain of Arabidopsis WRKY33 and functional analysis of tomato WRKY33 homologues in plant stress responses. Journal of Experimental Botany, 2015, 66, 4567-4583.	4.8	86
34	Brassinosteroids play a critical role in the regulation of pesticide metabolism in crop plants. Scientific Reports, 2015, 5, 9018.	3.3	110
35	ldentification and characterization of a novel group of legume-specific, Golgi apparatus-localized WRKY and Exo70 proteins from soybean. Journal of Experimental Botany, 2015, 66, 3055-3070.	4.8	13
36	Arabidopsis LIP5, a Positive Regulator of Multivesicular Body Biogenesis, Is a Critical Target of Pathogen-Responsive MAPK Cascade in Plant Basal Defense. PLoS Pathogens, 2014, 10, e1004243.	4.7	90

#	Article	IF	CITATIONS
37	E3 Ubiquitin Ligase CHIP and NBR1-Mediated Selective Autophagy Protect Additively against Proteotoxicity in Plant Stress Responses. PLoS Genetics, 2014, 10, e1004116.	3.5	127
38	<i>RBOH1</i> -dependent H ₂ O ₂ production and subsequent activation of MPK1/2 play an important role in acclimation-induced cross-tolerance in tomato. Journal of Experimental Botany, 2014, 65, 595-607.	4.8	129
39	The perplexing role of autophagy in plant innate immune responses. Molecular Plant Pathology, 2014, 15, 637-645.	4.2	82
40	H2O2 mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stresses. Journal of Experimental Botany, 2014, 65, 4371-4383.	4.8	257
41	Role and regulation of autophagy in heat stress responses of tomato plants. Frontiers in Plant Science, 2014, 5, 174.	3.6	162
42	Protein–Protein Interactions in the Regulation of WRKY Transcription Factors. Molecular Plant, 2013, 6, 287-300.	8.3	276
43	Silencing of tomato <i>RBOH1</i> and <i>MPK2</i> abolishes brassinosteroidâ€induced H ₂ O ₂ generation and stress tolerance. Plant, Cell and Environment, 2013, 36, 789-803.	5.7	132
44	NBR1-Mediated Selective Autophagy Targets Insoluble Ubiquitinated Protein Aggregates in Plant Stress Responses. PLoS Genetics, 2013, 9, e1003196.	3.5	281
45	Structural and Functional Analysis of VQ Motif-Containing Proteins in Arabidopsis as Interacting Proteins of WRKY Transcription Factors Â. Plant Physiology, 2012, 159, 810-825.	4.8	216
46	Cellular glutathione redox homeostasis plays an important role in the brassinosteroidâ€induced increase in CO ₂ assimilation in <i>Cucumis sativus</i> . New Phytologist, 2012, 194, 932-943.	7.3	120
47	Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus. Journal of Zhejiang University: Science B, 2012, 13, 811-823.	2.8	45
48	Brassinosteroid-induced CO2 assimilation is associated with increased stability of redox-sensitive photosynthetic enzymes in the chloroplasts in cucumber plants. Biochemical and Biophysical Research Communications, 2012, 426, 390-394.	2.1	19
49	Role of nitric oxide in hydrogen peroxideâ€dependent induction of abiotic stress tolerance by brassinosteroids in cucumber. Plant, Cell and Environment, 2011, 34, 347-358.	5.7	160
50	A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Plant Journal, 2011, 66, 953-968.	5.7	240
51	Induction of systemic stress tolerance by brassinosteroid in <i>Cucumis sativus</i> . New Phytologist, 2011, 191, 706-720.	7.3	124
52	<i>Arabidopsis</i> Sigma Factor Binding Proteins Are Activators of the WRKY33 Transcription Factor in Plant Defense. Plant Cell, 2011, 23, 3824-3841.	6.6	260
53	Phosphorylation of a WRKY Transcription Factor by Two Pathogen-Responsive MAPKs Drives Phytoalexin Biosynthesis in <i>Arabidopsis</i> Â Â. Plant Cell, 2011, 23, 1639-1653.	6.6	674
54	Roles of arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biology, 2010, 10, 281.	3.6	441

#	Article	IF	CITATIONS
55	Functional Analysis of the Arabidopsis <i>PAL</i> Gene Family in Plant Growth, Development, and Response to Environmental Stress Â. Plant Physiology, 2010, 153, 1526-1538.	4.8	668
56	ROS mediate brassinosteroids-induced plant stress responses. Plant Signaling and Behavior, 2010, 5, 532-534.	2.4	24
57	Biosynthesis of salicylic acid in plants. Plant Signaling and Behavior, 2009, 4, 493-496.	2.4	434
58	Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta, 2009, 230, 1185-1196.	3.2	232
59	An important role of a BAHD acyl transferaseâ€like protein in plant innate immunity. Plant Journal, 2009, 57, 1040-1053.	5.7	64
60	Reactive Oxygen Species Are Involved in Brassinosteroid-Induced Stress Tolerance in Cucumber Â. Plant Physiology, 2009, 150, 801-814.	4.8	640
61	Roles of ArabidopsisWRKY3 and WRKY4 Transcription Factors in Plant Responses to Pathogens. BMC Plant Biology, 2008, 8, 68.	3.6	244
62	Stress- and Pathogen-Induced Arabidopsis WRKY48 is a Transcriptional Activator that Represses Plant Basal Defense. Molecular Plant, 2008, 1, 459-470.	8.3	146
63	<i>Arabidopsis</i> WRKY38 and WRKY62 Transcription Factors Interact with Histone Deacetylase 19 in Basal Defense. Plant Cell, 2008, 20, 2357-2371.	6.6	481
64	Roles of Arabidopsis Cyclin-Dependent Kinase C Complexes in Cauliflower Mosaic Virus Infection, Plant Growth, and Development. Plant Cell, 2007, 19, 1388-1402.	6.6	87
65	Improperly Terminated, Unpolyadenylated mRNA of Sense Transgenes Is Targeted by RDR6-Mediated RNA Silencing in Arabidopsis. Plant Cell, 2007, 19, 943-958.	6.6	212
66	Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biology, 2007, 7, 2.	3.6	189
67	Effects of mutations and constitutive overexpression of EDS1 and PAD4 on plant resistance to different types of microbial pathogens. Plant Science, 2006, 171, 251-262.	3.6	39
68	Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant Journal, 2006, 48, 592-605.	5.7	804
69	Physical and Functional Interactions between Pathogen-Induced <i>Arabidopsis</i> WRKY18, WRKY40, and WRKY60 Transcription Factors. Plant Cell, 2006, 18, 1310-1326.	6.6	674
70	Pathogen-Induced Arabidopsis WRKY7 Is a Transcriptional Repressor and Enhances Plant Susceptibility to Pseudomonas syringae A. Plant Physiology, 2006, 142, 1180-1192.	4.8	165
71	Tobacco Transcription Factor WRKY1 Is Phosphorylated by the MAP Kinase SIPK and Mediates HR-Like Cell Death in Tobacco. Molecular Plant-Microbe Interactions, 2005, 18, 1027-1034.	2.6	157
72	Activation of hypersensitive cell death by pathogen-induced receptor-like protein kinases from Arabidopsis. Plant Molecular Biology, 2004, 56, 271-283.	3.9	133

#	Article	IF	CITATIONS
73	Sensitization of defense responses and activation of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis. Plant Molecular Biology, 2003, 53, 61-74.	3.9	168
74	Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Molecular Biology, 2003, 51, 21-37.	3.9	795
75	Analysis of the Involvement of an Inducible Arabidopsis RNA-Dependent RNA Polymerase in Antiviral Defense. Molecular Plant-Microbe Interactions, 2003, 16, 206-216.	2.6	252
76	Potentiation of Developmentally Regulated Plant Defense Response by AtWRKY18, a Pathogen-Induced Arabidopsis Transcription Factor. Plant Physiology, 2002, 129, 706-716.	4.8	351
77	A family of dispersed repetitive DNA sequences in tobacco contain clusters of W-box elements recognized by pathogen-induced WRKY DNA-binding proteins. Plant Science, 2001, 161, 655-664.	3.6	10
78	Evidence for an Important Role of WRKY DNA Binding Proteins in the Regulation of NPR1 Gene Expression. Plant Cell, 2001, 13, 1527-1540.	6.6	322
79	An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6516-6521.	7.1	278
80	Evidence for an Important Role of WRKY DNA Binding Proteins in the Regulation of <i>NPR1</i> Gene Expression. Plant Cell, 2001, 13, 1527-1540.	6.6	515
81	A Superfamily of Proteins with Novel Cysteine-Rich Repeats. Plant Physiology, 2001, 126, 473-476.	4.8	121
82	Evidence for an Important Role of WRKY DNA Binding Proteins in the Regulation of NPR1 Gene Expression. Plant Cell, 2001, 13, 1527.	6.6	53
83	Salicylic Acid- And Nitric Oxide-Mediated Signal Transduction In Disease Resistance. , 2001, , 201-207.		0
84	Harpin-Induced Hypersensitive Cell Death Is Associated with Altered Mitochondrial Functions in Tobacco Cells. Molecular Plant-Microbe Interactions, 2000, 13, 183-190.	2.6	113
85	Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco. Plant Molecular Biology, 2000, 42, 387-396.	3.9	194
86	Identification of genes encoding receptorâ€like protein kinases as possible targets of pathogen―and salicylic acidâ€induced WRKY DNAâ€binding proteins in <i>Arabidopsis</i> . Plant Journal, 2000, 24, 837-847.	5.7	8
87	Identification of genes encoding receptor-like protein kinases as possible targets of pathogen- and salicylic acid-induced WRKY DNA-binding proteins in Arabidopsis. Plant Journal, 2000, 24, 837-847.	5.7	218
88	Salicylic Acid Induces Rapid Inhibition of Mitochondrial Electron Transport and Oxidative Phosphorylation in Tobacco Cells1. Plant Physiology, 1999, 120, 217-226.	4.8	129
89	A pathogen- and salicylic acid-induced WRKY DNA-binding activity recognizes the elicitor response element of the tobacco class I chitinase gene promoter. Plant Journal, 1999, 18, 141-149.	5.7	171
90	Expression of tobacco class II catalase gene activates the endogenous homologous gene and is associated with disease resistance in transgenic potato plants. Plant Molecular Biology, 1999, 39, 477-488.	3.9	30

#	Article	IF	CITATIONS
91	Benzothiadiazole, an inducer of plant defenses, inhibits catalase and ascorbate peroxidase. Phytochemistry, 1998, 47, 651-657.	2.9	116
92	Possible involvement of lipid peroxidation in salicylic acid-mediated induction of PR-1 gene expression. Phytochemistry, 1998, 47, 555-566.	2.9	90
93	An oligo selection procedure for identification of sequence-specific DNA-binding activities associated with the plant defence response. Plant Journal, 1998, 16, 515-522.	5.7	85
94	Induction of PR-1 Proteins and Potentiation of Pathogen Signals by Salicylic Acid Exhibit the Same Dose Response and Structural Specificity in Plant Cell Cultures. Molecular Plant-Microbe Interactions, 1998, 11, 568-571.	2.6	8
95	Differential Accumulation of Salicylic Acid and Salicylic Acid-Sensitive Catalase in Different Rice Tissues. Plant Physiology, 1997, 114, 193-201.	4.8	121
96	Is the High Basal Level of Salicylic Acid Important for Disease Resistance in Potato?. Plant Physiology, 1997, 115, 343-349.	4.8	86
97	Development of necrosis and activation of disease resistance in transgenic tobacco plants with severely reduced catalase levels. Plant Journal, 1997, 11, 993-1005.	5.7	199
98	Two inducers of plant defense responses, 2,6-dichloroisonicotinec acid and salicylic acid, inhibit catalase activity in tobacco Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7143-7147.	7.1	284
99	Induction, modification, and transduction of the salicylic acid signal in plant defense responses Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 4134-4137.	7.1	167
100	Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science, 1993, 262, 1883-1886.	12.6	1,109
101	Purification and characterization of a soluble salicylic acid-binding protein from tobacco Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 9533-9537.	7.1	212
102	Thermal Instability of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase from a Temperature-Conditional Chloroplast Mutant of Chlamydomonas reinhardtii. Plant Physiology, 1993, 101, 1189-1194.	4.8	32
103	How various factors influence the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase. Photosynthesis Research, 1992, 31, 157-164.	2.9	69
104	Chloroplast and Nuclear Mutations That Affect Rubisco Structure and Function in Chlamydomonas Reinhardtii. , 1992, , 593-600.		3
105	Complementing amino acid substitutions within loop 6 of the .alpha./.betabarrel active site influence the carbon dioxide/oxygen specificity of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase. Biochemistry, 1991, 30, 8846-8850.	2.5	47
106	Identification of a soluble salicylic acid-binding protein that may function in signal transduction in the plant disease-resistance response Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 8179-8183.	7.1	147
107	Proteolysis and transition-state-analogue binding of mutant forms of ribulose-1,5-bisphosphate carboxylase/oxygenase from Chlamydomonas reinhardtii. Planta, 1991, 183, 597-603.	3.2	24
108	Nuclear mutation restores the reduced CO2O2 specificity of ribulosebisphosphate carboxylase/ oxygenase in a temperature-conditional chloroplast mutant of Chlamydomonas reinhardtii. Archives of Biochemistry and Biophysics, 1990, 283, 60-67.	3.0	30

#	Article	IF	CITATIONS
109	Missense Mutation in the Chlamydomonas Chloroplast Gene that Encodes the Rubisco Large Subunit. Plant Physiology, 1988, 86, 987-989.	4.8	16