Aleksandra Trifunovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5015703/publications.pdf

Version: 2024-02-01

70 papers 8,423 citations

145106 33 h-index 68 g-index

76 all docs

76 docs citations

76 times ranked 12278 citing authors

#	Article	IF	CITATIONS
1	CLPP deficiency ameliorates neurodegeneration caused by impaired mitochondrial protein synthesis. Brain, 2022, 145, 92-104.	3.7	9
2	Mitochondrial matrix proteases: quality control and beyond. FEBS Journal, 2022, 289, 7128-7146.	2.2	27
3	Spatial and temporal control of mitochondrial H ₂ O ₂ release in intact human cells. EMBO Journal, 2022, 41, e109169.	3.5	39
4	FGF21 modulates mitochondrial stress response in cardiomyocytes only under mild mitochondrial dysfunction. Science Advances, 2022, 8, eabn7105.	4.7	23
5	CLUH controls astrin-1 expression to couple mitochondrial metabolism to cell cycle progression. ELife, 2022, 11, .	2.8	7
6	Remission of obesity and insulin resistance is not sufficient to restore mitochondrial homeostasis in visceral adipose tissue. Redox Biology, 2022, 54, 102353.	3.9	14
7	Host–commensal interaction promotes health and lifespan in Caenorhabditis elegans through the activation of HLH-30/TFEB-mediated autophagy. Aging, 2021, 13, 8040-8054.	1.4	15
8	Tune instead of destroy: How proteolysis keeps OXPHOS in shape. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148365.	0.5	29
9	DNA polymerase gamma mutations that impair holoenzyme stability cause catalytic subunit depletion. Nucleic Acids Research, 2021, 49, 5230-5248.	6.5	15
10	Phosphoproteomics of the developing heart identifies PERM1 - An outer mitochondrial membrane protein. Journal of Molecular and Cellular Cardiology, 2021, 154, 41-59.	0.9	9
11	Adaptation to mitochondrial stress requires CHOP-directed tuning of ISR. Science Advances, 2021, 7, .	4.7	68
12	Systemic regulation of mitochondria by germline proteostasis prevents protein aggregation in the soma of <i>C. elegans </i> . Science Advances, 2021, 7, .	4.7	28
13	PERM1 interacts with the MICOS-MIB complex to connect the mitochondria and sarcolemma via ankyrin B. Nature Communications, 2021, 12, 4900.	5.8	6
14	Implication of folate deficiency in CYP2U1 loss of function. Journal of Experimental Medicine, 2021, 218, .	4.2	13
15	Adaptive translational pausing is a hallmark of the cellular response to severe environmental stress. Molecular Cell, 2021, 81, 4191-4208.e8.	4.5	18
16	Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing. Cell Metabolism, 2021, 33, 2398-2414.e9.	7.2	89
17	Identification of Putative Mitochondrial Protease Substrates. Methods in Molecular Biology, 2021, 2192, 313-329.	0.4	1
18	Neuronal ablation of mt-AspRS in mice induces immune pathway activation prior to severe and progressive cortical and behavioral disruption. Experimental Neurology, 2020, 326, 113164.	2.0	11

#	Article	IF	Citations
19	A C. elegans model for neurodegeneration in Cockayne syndrome. Nucleic Acids Research, 2020, 48, 10973-10985.	6.5	23
20	DARS2 is indispensable for Purkinje cell survival and protects against cerebellar ataxia. Human Molecular Genetics, 2020, 29, 2845-2854.	1.4	11
21	Mitochondrial DNA mutations and aging. , 2020, , 221-242.		5
22	Mitochondrial Regulation of the 26S Proteasome. Cell Reports, 2020, 32, 108059.	2.9	28
23	GLP-1 Receptor Signaling in Astrocytes Regulates Fatty Acid Oxidation, Mitochondrial Integrity, and Function. Cell Metabolism, 2020, 31, 1189-1205.e13.	7.2	76
24	The Mouse Heart Mitochondria N Terminome Provides Insights into ClpXP-Mediated Proteolysis. Molecular and Cellular Proteomics, 2020, 19, 1330-1345.	2.5	20
25	Mitochondrial Dysfunction Combined with High Calcium Load Leads to Impaired Antioxidant Defense Underlying the Selective Loss of Nigral Dopaminergic Neurons. Journal of Neuroscience, 2020, 40, 1975-1986.	1.7	34
26	A salvage pathway maintains highly functional respiratory complex I. Nature Communications, 2020, 11 , 1643 .	5.8	80
27	Alterations of redox and iron metabolism accompany the development of <scp>HIV</scp> latency. EMBO Journal, 2020, 39, e102209.	3.5	37
28	Prostaglandin signals from adult germline stem cells delay somatic ageing of Caenorhabditis elegans. Nature Metabolism, 2019, 1, 790-810.	5.1	30
29	KLF-1 orchestrates a xenobiotic detoxification program essential for longevity of mitochondrial mutants. Nature Communications, 2019, 10, 3323.	5.8	25
30	Loss of genomic integrity induced by lysosphingolipid imbalance drives ageing in the heart. EMBO Reports, 2019, 20, .	2.0	26
31	<scp>CLPP</scp> deficiency protects against metabolic syndrome but hinders adaptive thermogenesis. EMBO Reports, 2018, 19, .	2.0	42
32	Mechanisms of Mitochondria Assembly, Dynamics and Turnover in Health and Disease. Journal of Molecular Biology, 2018, 430, 4821-4822.	2.0	0
33	DARS2 protects against neuroinflammation and apoptotic neuronal loss, but is dispensable for myelin producing cells. Human Molecular Genetics, 2017, 26, 4181-4189.	1.4	23
34	Deficiency of <i>WARS2</i> , encoding mitochondrial tryptophanyl tRNA synthetase, causes severe infantile onset leukoencephalopathy. American Journal of Medical Genetics, Part A, 2017, 173, 2505-2510.	0.7	36
35	Origins of mtDNA mutations in ageing. Essays in Biochemistry, 2017, 61, 325-337.	2.1	54
36	Loss of <scp>CLPP</scp> alleviates mitochondrial cardiomyopathy without affecting the mammalian <scp>UPR</scp> ^{mt} . EMBO Reports, 2016, 17, 953-964.	2.0	86

#	Article	IF	Citations
37	The CoQH2/CoQ Ratio Serves as a Sensor of Respiratory Chain Efficiency. Cell Reports, 2016, 15, 197-209.	2.9	215
38	<scp>CLPP</scp> coordinates mitoribosomal assembly through the regulation of <scp>ERAL</scp> 1 levels. EMBO Journal, 2016, 35, 2566-2583.	3.5	123
39	Human R1441C LRRK2 regulates the synaptic vesicle proteome and phosphoproteome in a <i>Drosophila</i> model of Parkinson's disease. Human Molecular Genetics, 2016, 25, ddw352.	1.4	61
40	Different faces of mitochondrial DNA mutators. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1362-1372.	0.5	39
41	Spastin Binds to Lipid Droplets and Affects Lipid Metabolism. PLoS Genetics, 2015, 11, e1005149.	1.5	84
42	Is mitochondrial free radical theory of aging getting old?. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1345-1346.	0.5	9
43	Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity. PLoS Genetics, 2014, 10, e1004385.	1.5	63
44	Embelin inhibits endothelial mitochondrial respiration and impairs neoangiogenesis during tumor growth and wound healing. EMBO Molecular Medicine, 2014, 6, 624-639.	3.3	71
45	Defects in β-Cell Ca2+ Dynamics in Age-Induced Diabetes. Diabetes, 2014, 63, 4100-4114.	0.3	35
46	Obesity-Induced CerS6-Dependent C16:0 Ceramide Production Promotes Weight Gain and Glucose Intolerance. Cell Metabolism, 2014, 20, 678-686.	7.2	520
47	Tissue-Specific Loss of DARS2 Activates Stress Responses Independently of Respiratory Chain Deficiency in the Heart. Cell Metabolism, 2014, 19, 458-469.	7.2	185
48	Succinate Dehydrogenase Upregulation Destabilize Complex I and Limits the Lifespan of gas-1 Mutant. PLoS ONE, 2013, 8, e59493.	1.1	31
49	Somatic Progenitor Cell Vulnerability to Mitochondrial DNA Mutagenesis Underlies Progeroid Phenotypes in Polg Mutator Mice. Cell Metabolism, 2012, 15, 100-109.	7.2	213
50	Random mtDNA mutations modulate proliferation capacity in mouse embryonic fibroblasts. Biochemical and Biophysical Research Communications, 2011, 409, 394-399.	1.0	13
51	A Tissue-Specific Approach to the Analysis of Metabolic Changes in Caenorhabditis elegans. PLoS ONE, 2011, 6, e28417.	1.1	15
52	High brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B ratio. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20087-20092.	3.3	218
53	Point Mutations Are Causing Progeroid Phenotypes in the mtDNA Mutator Mouse. Cell Metabolism, 2010, 11, 1.	7.2	12
54	Response: Point Mutations Are Causing Progeroid Phenotypes in the mtDNA Mutator Mouse. Cell Metabolism, 2010, 11, 93.	7.2	5

#	Article	IF	Citations
55	Caenorhabditis elegans as a model system for mtDNA replication defects. Methods, 2010, 51, 437-443.	1.9	28
56	Mitochondrial DNA level, but not active replicase, is essential for Caenorhabditis elegans development. Nucleic Acids Research, 2009, 37, 1817-1828.	6.5	100
57	Somatic mtDNA mutations and aging – Facts and fancies. Experimental Gerontology, 2009, 44, 101-105.	1.2	33
58	Random Point Mutations with Major Effects on Protein-Coding Genes Are the Driving Force behind Premature Aging in mtDNA Mutator Mice. Cell Metabolism, 2009, 10, 131-138.	7.2	200
59	The mtDNA mutator mouse: Dissecting mitochondrial involvement in aging. Aging, 2009, 1, 1028-1032.	1.4	52
60	Strong Purifying Selection in Transmission of Mammalian Mitochondrial DNA. PLoS Biology, 2008, 6, e10.	2.6	425
61	Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1325-1330.	3.3	516
62	Somatic mtDNA mutations cause progressive hearing loss in the mouse. Experimental Cell Research, 2007, 313, 3924-3934.	1.2	48
63	Mitochondrial DNA and ageing. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 611-617.	0.5	96
64	Proteolytic Processing of OPA1 Links Mitochondrial Dysfunction to Alterations in Mitochondrial Morphology. Journal of Biological Chemistry, 2006, 281, 37972-37979.	1.6	382
65	Mitochondrial DNA polymerase gamma is essential for mammalian embryogenesis. Human Molecular Genetics, 2005, 14, 1775-1783.	1.4	219
66	Modelling the mitochondrial role in ageing. Drug Discovery Today: Disease Models, 2005, 2, 257-263.	1.2	0
67	Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17993-17998.	3.3	491
68	Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature, 2004, 429, 417-423.	13.7	2,318
69	Tissue-Specific Knockout Model for Study of Mitochondrial DNA Mutation Disorders. Methods in Enzymology, 2002, 353, 409-421.	0.4	9
70	Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nature Genetics, 2002, 31, 289-294.	9.4	535