Kimberly A Kline

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5015684/publications.pdf

Version: 2024-02-01

69 papers 4,285 citations

36 h-index 61 g-index

88 all docs 88 docs citations

88 times ranked 5790 citing authors

#	Article	IF	CITATIONS
1	Bacterial Adhesins in Host-Microbe Interactions. Cell Host and Microbe, 2009, 5, 580-592.	11.0	521
2	Biofilm-associated infection by enterococci. Nature Reviews Microbiology, 2019, 17, 82-94.	28.6	263
3	Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection, and the Emerging Microbiota of the Urinary Tract. Microbiology Spectrum, 2016, 4, .	3.0	243
4	Infection in an aging population. Current Opinion in Microbiology, 2016, 29, 63-67.	5.1	167
5	A tale of two pili: assembly and function of pili in bacteria. Trends in Microbiology, 2010, 18, 224-232.	7.7	153
6	Contribution of Autolysin and Sortase A during <i>Enterococcus faecalis</i> DNA-Dependent Biofilm Development. Infection and Immunity, 2009, 77, 3626-3638.	2.2	147
7	Enterococcal Metabolite Cues Facilitate Interspecies Niche Modulation and Polymicrobial Infection. Cell Host and Microbe, 2016, 20, 493-503.	11.0	131
8	The Metal Ion-Dependent Adhesion Site Motif of the Enterococcus faecalis EbpA Pilin Mediates Pilus Function in Catheter-Associated Urinary Tract Infection. MBio, 2012, 3, e00177-12.	4.1	118
9	G-CSF induction early in uropathogenic <i>Escherichia coli</i> infection of the urinary tract modulates host immunity. Cellular Microbiology, 2008, 10, 2568-2578.	2.1	113
10	A Dual-Function Antibiotic-Transporter Conjugate Exhibits Superior Activity in Sterilizing MRSA Biofilms and Killing Persister Cells. Journal of the American Chemical Society, 2018, 140, 16140-16151.	13.7	109
11	The frequency and rate of pilin antigenic variation inNeisseria gonorrhoeae. Molecular Microbiology, 2005, 58, 510-519.	2.5	108
12	Extracellular Electron Transfer Powers Enterococcus faecalis Biofilm Metabolism. MBio, 2018, 9, .	4.1	96
13	High-Performance Capacitive Deionization Disinfection of Water with Graphene Oxide- <i>graft</i> -Quaternized Chitosan Nanohybrid Electrode Coating. ACS Nano, 2015, 9, 10142-57.	14.6	95
14	Combinatorial Small-Molecule Therapy Prevents Uropathogenic Escherichia coli Catheter-Associated Urinary Tract Infections in Mice. Antimicrobial Agents and Chemotherapy, 2012, 56, 4738-4745.	3.2	94
15	In Vivo Anti-Biofilm and Anti-Bacterial Non-Leachable Coating Thermally Polymerized on Cylindrical Catheter. ACS Applied Materials & Samp; Interfaces, 2017, 9, 36269-36280.	8.0	93
16	Mechanism for Sortase Localization and the Role of Sortase Localization in Efficient Pilus Assembly in <i>Enterococcus faecalis</i> . Journal of Bacteriology, 2009, 191, 3237-3247.	2.2	89
17	Polymicrobial–Host Interactions during Infection. Journal of Molecular Biology, 2016, 428, 3355-3371.	4.2	89
18	Recombination, repair and replication in the pathogenic Neisseriae: the 3 R \hat{a} es of molecular genetics of two human-specific bacterial pathogens. Molecular Microbiology, 2003, 50, 3-13.	2.5	84

#	Article	IF	CITATIONS
19	Enterococcus faecalis Promotes Innate Immune Suppression and Polymicrobial Catheter-Associated Urinary Tract Infection. Infection and Immunity, 2017, 85, .	2.2	76
20	Model systems for the study of Enterococcal colonization and infection. Virulence, 2017, 8, 1525-1562.	4.4	75
21	Focal targeting by human \hat{l}^2 -defensin 2 disrupts localized virulence factor assembly sites in <i>Enterococcus faecalis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20230-20235.	7.1	72
22	Dr. Jekyll and Mr. Hide: How Enterococcus faecalis Subverts the Host Immune Response to Cause Infection. Journal of Molecular Biology, 2019, 431, 2932-2945.	4.2	72
23	Immune Activation and Suppression by Group B Streptococcus in a Murine Model of Urinary Tract Infection. Infection and Immunity, 2011, 79, 3588-3595.	2.2	71
24	Enterococcus faecalis Modulates Immune Activation and Slows Healing During Wound Infection. Journal of Infectious Diseases, 2017, 216, 1644-1654.	4.0	67
25	Pilin and Sortase Residues Critical for Endocarditis- and Biofilm-Associated Pilus Biogenesis in Enterococcus faecalis. Journal of Bacteriology, 2013, 195, 4484-4495.	2.2	64
26	Low-Level Pilin Expression Allows for Substantial DNA Transformation Competence in Neisseria gonorrhoeae. Infection and Immunity, 2003, 71, 6279-6291.	2.2	63
27	Streptozocin-Induced Diabetic Mouse Model of Urinary Tract Infection. Infection and Immunity, 2008, 76, 4290-4298.	2.2	60
28	Immune Modulation by Group B Streptococcus Influences Host Susceptibility to Urinary Tract Infection by Uropathogenic Escherichia coli. Infection and Immunity, 2012, 80, 4186-4194.	2.2	55
29	Comprehensive analysis of phospholipids and glycolipids in the opportunistic pathogen Enterococcus faecalis. PLoS ONE, 2017, 12, e0175886.	2.5	54
30	Characterization of a Novel Murine Model of <i>Staphylococcus saprophyticus</i> Urinary Tract Infection Reveals Roles for Ssp and SdrI in Virulence. Infection and Immunity, 2010, 78, 1943-1951.	2.2	51
31	Focal Targeting of the Bacterial Envelope by Antimicrobial Peptides. Frontiers in Cell and Developmental Biology, 2016, 4, 55.	3.7	51
32	Epstein–Barr virus lacking latent membrane protein 2 immortalizes B cells with efficiency indistinguishable from that of wild-type virus. Journal of General Virology, 1999, 80, 2193-2203.	2.9	51
33	Mutation of the priA Gene of Neisseria gonorrhoeae Affects DNA Transformation and DNA Repair. Journal of Bacteriology, 2005, 187, 5347-5355.	2.2	46
34	Loss of both Holliday junction processing pathways is synthetically lethal in the presence of gonococcal pilin antigenic variation. Molecular Microbiology, 2006, 61, 185-193.	2.5	45
35	Combined Efficacy of an Antimicrobial Cationic Peptide Polymer with Conventional Antibiotics to Combat Multidrug-Resistant Pathogens. ACS Infectious Diseases, 2020, 6, 1228-1237.	3.8	41
36	Role of the Rep Helicase Gene in Homologous Recombination in Neisseria gonorrhoeae. Journal of Bacteriology, 2005, 187, 2903-2907.	2.2	38

#	Article	IF	CITATIONS
37	Urinary catheter-associated microbiota change in accordance with treatment and infection status. PLoS ONE, 2017, 12, e0177633.	2.5	37
38	Eradicating biofilm infections: an update on current and prospective approaches. Current Opinion in Microbiology, 2021, 63, 117-125.	5.1	34
39	Stable Expression of a New Chimeric Fluorescent Reporter in the Human Malaria Parasite Plasmodium falciparum. Infection and Immunity, 2000, 68, 2328-2332.	2.2	33
40	Planktonic Interference and Biofilm Alliance between Aggregation Substance and Endocarditis- and Biofilm-Associated Pili in Enterococcus faecalis. Journal of Bacteriology, 2018, 200, .	2.2	30
41	Significance of the <scp>d</scp> -Serine-Deaminase and <scp>d</scp> -Serine Metabolism of Staphylococcus saprophyticus for Virulence. Infection and Immunity, 2013, 81, 4525-4533.	2.2	28
42	Heme cross-feeding can augment <i>Staphylococcus aureus</i> and <i>Enterococcus faecalis</i> dual species biofilms. ISME Journal, 2022, 16, 2015-2026.	9.8	28
43	Bladder catheterization increases susceptibility to infection that can be prevented by prophylactic antibiotic treatment. JCI Insight, 2016, 1, e88178.	5.0	26
44	Impact of Host Age and Parity on Susceptibility to Severe Urinary Tract Infection in a Murine Model. PLoS ONE, 2014, 9, e97798.	2.5	25
45	Anhydrous polymerâ€based coating with sustainable controlled release functionality for facile, efficacious impregnation, and delivery of antimicrobial peptides. Biotechnology and Bioengineering, 2018, 115, 2000-2012.	3.3	20
46	Transposon Mutagenesis Identifies Sites Upstream of the Neisseria gonorrhoeae pilE Gene That Modulate Pilin Antigenic Variation. Journal of Bacteriology, 2007, 189, 3462-3470.	2.2	18
47	Multiplex CRISPRi System Enables the Study of Stage-Specific Biofilm Genetic Requirements in Enterococcus faecalis. MBio, 2020, 11 , .	4.1	18
48	Engineered Lysins With Customized Lytic Activities Against Enterococci and Staphylococci. Frontiers in Microbiology, 2020, 11, 574739.	3.5	18
49	A reference map of the membrane proteome of <i>Enterococcus faecalis</i> . Proteomics, 2011, 11, 3935-3941.	2.2	17
50	Development of a polymer-based antimicrobial coating for efficacious urinary catheter protection. Biotechnology Notes, 2021, 2, 1-10.	1.2	17
51	Streptococcus pyogenes Capsule Promotes Microcolony-Independent Biofilm Formation. Journal of Bacteriology, 2019, 201, .	2.2	16
52	Membrane adaptation limitations in <i>Enterococcus faecalis</i> li>underlie sensitivity and the inability to develop significant resistance to conjugated oligoelectrolytes. RSC Advances, 2018, 8, 10284-10293.	3.6	15
53	Streptolysinâ€induced endoplasmic reticulum stress promotes group A Streptococcal hostâ€associated biofilm formation and necrotising fasciitis. Cellular Microbiology, 2019, 21, e12956.	2.1	15
54	Enterococcus faecalis Adapts to Antimicrobial Conjugated Oligoelectrolytes by Lipid Rearrangement and Differential Expression of Membrane Stress Response Genes. Frontiers in Microbiology, 2020, 11, 155.	3.5	13

#	Article	IF	CITATIONS
55	Overcoming the challenge of establishing biofilms in vivo: a roadmap for Enterococci. Current Opinion in Microbiology, 2020, 53, 9-18.	5.1	13
56	Enterococcus faecalis Manganese Exporter MntE Alleviates Manganese Toxicity and Is Required for Mouse Gastrointestinal Colonization. Infection and Immunity, 2020, 88, .	2.2	13
57	Enterococcus faecalis Antagonizes Pseudomonas aeruginosa Growth in Mixed-Species Interactions. Journal of Bacteriology, 2022, 204, .	2.2	13
58	Enterococcus faecalis alters endo-lysosomal trafficking to replicate and persist within mammalian cells. PLoS Pathogens, 2022, 18, e1010434.	4.7	12
59	Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection, and the Emerging Microbiota of the Urinary Tract., 0,, 459-502.		9
60	The composition and function of <i>Enterococcus faecalis </i> membrane vesicles. MicroLife, 2021, 2, .	2.1	8
61	Right Place, Right Time: Focalization of Membrane Proteins in Gram-Positive Bacteria. Trends in Microbiology, 2016, 24, 611-621.	7.7	5
62	Cellular chaining influences biofilm formation and structure in group A Streptococcus. Biofilm, 2020, 2, 100013.	3.8	5
63	The novel E. coli cell division protein, YtfB, plays a role in eukaryotic cell adhesion. Scientific Reports, 2020, 10, 6745.	3.3	3
64	Recombination, repair and replication in the pathogenic Neisseriae: the 3 R's of molecular genetics of two human-specific bacterial pathogens. Molecular Microbiology, 2003, 51, 297-297.	2.5	1
65	Wrecking Staph's Rafts: Staphylococcus aureus No Longer Unsinkable?. Cell Chemical Biology, 2017, 24, 779-781.	5.2	1
66	The effects of Staphylococcus aureus biofilm conditioned media on 3T3 fibroblasts. FEMS Microbes, 2021, 2, .	2.1	1
67	G-CSF induction early in uropathogenicEscherichia coliinfection of the urinary tract modulates host immunity. Cellular Microbiology, 2010, 12, 411-411.	2.1	0
68	Editorial: Omics and Systems Approaches to Study the Biology and Applications of Lactic Acid Bacteria. Frontiers in Microbiology, 2020, 11, 1786.	3.5	0
69	Corrigendum to: The composition and function of Enterococcus faecalis membrane vesicles. MicroLife, 2021, 2, .	2.1	0