
Dan Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5015650/publications.pdf Version: 2024-02-01

ΠΑΝ ΥΠΑΝ

#	Article	IF	CITATIONS
1	Fundamentals and applications of inertial microfluidics: a review. Lab on A Chip, 2016, 16, 10-34.	3.1	737
2	Liquid metal-filled magnetorheological elastomer with positive piezoconductivity. Nature Communications, 2019, 10, 1300.	5.8	267
3	Recent progress of particle migration in viscoelastic fluids. Lab on A Chip, 2018, 18, 551-567.	3.1	186
4	Hybrid microfluidics combined with active and passive approaches for continuous cell separation. Electrophoresis, 2017, 38, 238-249.	1.3	138
5	Microfluidic Mass Production of Stabilized and Stealthy Liquid Metal Nanoparticles. Small, 2018, 14, e1800118.	5.2	117
6	Phase Separation in Liquid Metal Nanoparticles. Matter, 2019, 1, 192-204.	5.0	110
7	Tunable particle separation in a hybrid dielectrophoresis (DEP)- inertial microfluidic device. Sensors and Actuators B: Chemical, 2018, 267, 14-25.	4.0	99
8	Intelligent image-activated cell sorting 2.0. Lab on A Chip, 2020, 20, 2263-2273.	3.1	93
9	Functional Liquid Metal Nanoparticles Produced by Liquidâ€Based Nebulization. Advanced Materials Technologies, 2019, 4, 1800420.	3.0	78
10	Liquid Metal Composites with Anisotropic and Unconventional Piezoconductivity. Matter, 2020, 3, 824-841.	5.0	77
11	A Review of Secondary Flow in Inertial Microfluidics. Micromachines, 2020, 11, 461.	1.4	75
12	A novel viscoelastic-based ferrofluid for continuous sheathless microfluidic separation of nonmagnetic microparticles. Lab on A Chip, 2016, 16, 3947-3956.	3.1	73
13	Versatile Microfluidic Platforms Enabled by Novel Magnetorheological Elastomer Microactuators. Advanced Functional Materials, 2018, 28, 1705484.	7.8	71
14	Fundamentals of Differential Particle Inertial Focusing in Symmetric Sinusoidal Microchannels. Analytical Chemistry, 2019, 91, 4077-4084.	3.2	51
15	Continuous plasma extraction under viscoelastic fluid in a straight channel with asymmetrical expansion–contraction cavity arrays. Lab on A Chip, 2016, 16, 3919-3928.	3.1	50
16	High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 1422-1430.	2.7	47
17	Multiphysics microfluidics for cell manipulation and separation: a review. Lab on A Chip, 2022, 22, 423-444.	3.1	47
18	Sheathless separation of microalgae from bacteria using a simple straight channel based on viscoelastic microfluidics. Lab on A Chip, 2019, 19, 2811-2821.	3.1	42

Dan Yuan

#	Article	IF	CITATIONS
19	Continuous microfluidic 3D focusing enabling microflow cytometry for single-cell analysis. Talanta, 2021, 221, 121401.	2.9	40
20	On-Chip Microparticle and Cell Washing Using Coflow of Viscoelastic Fluid and Newtonian Fluid. Analytical Chemistry, 2017, 89, 9574-9582.	3.2	37
21	Investigation of particle lateral migration in sampleâ€sheath flow of viscoelastic fluid and Newtonian fluid. Electrophoresis, 2016, 37, 2147-2155.	1.3	36
22	Sheathless Dean-flow-coupled elasto-inertial particle focusing and separation in viscoelastic fluid. RSC Advances, 2017, 7, 3461-3469.	1.7	35
23	Separation and Enrichment of Yeast <i>Saccharomyces cerevisiae</i> by Shape Using Viscoelastic Microfluidics. Analytical Chemistry, 2021, 93, 1586-1595.	3.2	35
24	Dean-flow-coupled elasto-inertial particle and cell focusing in symmetric serpentine microchannels. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	33
25	Liquid metal-based amalgamation-assisted lithography for fabrication of complex channels with diverse structures and configurations. Lab on A Chip, 2018, 18, 785-792.	3.1	28
26	A portable, hand-powered microfluidic device for sorting of biological particles. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	28
27	High-throughput sheathless and three-dimensional microparticle focusing using a microchannel with arc-shaped groove arrays. Scientific Reports, 2017, 7, 41153.	1.6	27
28	High-Throughput, Off-Chip Microdroplet Generator Enabled by a Spinning Conical Frustum. Analytical Chemistry, 2019, 91, 3725-3732.	3.2	27
29	An integrated dielectrophoresis-active hydrophoretic microchip for continuous particle filtration and separation. Journal of Micromechanics and Microengineering, 2015, 25, 084010.	1.5	26
30	Sheathless Separation of Cyanobacterial <i>Anabaena</i> by Shape Using Viscoelastic Microfluidics. Analytical Chemistry, 2021, 93, 12648-12654.	3.2	24
31	Deep imaging flow cytometry. Lab on A Chip, 2022, 22, 876-889.	3.1	22
32	Flow rate-insensitive microparticle separation and filtration using a microchannel with arc-shaped groove arrays. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	21
33	Inertial Microfluidic Purification of Floating Cancer Cells for Drug Screening and Three-Dimensional Tumor Models. Analytical Chemistry, 2020, 92, 11558-11564.	3.2	20
34	Tunable Particle Focusing in a Straight Channel with Symmetric Semicircle Obstacle Arrays Using Electrophoresis-Modified Inertial Effects. Micromachines, 2016, 7, 195.	1.4	19
35	Length-based separation of Bacillus subtilis bacterial populations by viscoelastic microfluidics. Microsystems and Nanoengineering, 2022, 8, 7.	3.4	18
36	Analysis of Hydrodynamic Mechanism on Particles Focusing in Micro-Channel Flows. Micromachines, 2017, 8, 197.	1.4	17

Dan Yuan

#	Article	IF	CITATIONS
37	Development of a novel magnetophoresis-assisted hydrophoresis microdevice for rapid particle ordering. Biomedical Microdevices, 2016, 18, 54.	1.4	16
38	High-throughput production of uniformly sized liquid metal microdroplets using submerged electrodispersion. Applied Physics Letters, 2019, 114, 154101.	1.5	12
39	A label-free and high-throughput separation of neuron and glial cells using an inertial microfluidic platform. Biomicrofluidics, 2016, 10, 034104.	1.2	11
40	Modular off-chip emulsion generator enabled by a revolving needle. Lab on A Chip, 2020, 20, 4592-4599.	3.1	11
41	Investigation of viscoelastic focusing of particles and cells in a zigzag microchannel. Electrophoresis, 2021, 42, 2230-2237.	1.3	10
42	Double-Mode Microparticle Manipulation by Tunable Secondary Flow in Microchannel With Arc-Shaped Groove Arrays. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 1406-1412.	2.7	8
43	Morphological Indicator for Directed Evolution of Euglena gracilis with a High Heavy Metal Removal Efficiency. Environmental Science & Technology, 2021, 55, 7880-7889.	4.6	7
44	A rapid, maskless 3D prototyping for fabrication of capillary circuits: Toward urinary protein detection. Electrophoresis, 2018, 39, 957-964.	1.3	6
45	Top sheath flow-assisted secondary flow particle manipulation in microchannels with the slanted groove structure. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	6
46	The Continuous Concentration of Particles and Cancer Cell Line Using Cell Margination in a Groove-Based Channel. Micromachines, 2017, 8, 315.	1.4	5
47	Characteristics of a dynamic atomic force microscopy based on a higher-order resonant silicon cantilever and experiments. Measurement: Journal of the International Measurement Confederation, 2016, 94, 31-36.	2.5	4
48	High Throughput Cell-Free Extraction of Plasma by an Integrated Microfluidic Device Combining Inertial Focusing and Membrane. Journal of Heat Transfer, 2017, 139, .	1.2	3
49	Enhanced particle self-ordering in a double-layer channel. Biomedical Microdevices, 2018, 20, 23.	1.4	2
50	Perspective - what constitutes a quality analytical paper: Microfluidics and Flow analysis. Talanta Open, 2021, 4, 100055.	1.7	2
51	High Throughput Cell-Free Extraction of Plasma by an Integrated Microfluidic Device Combining Inertial Microfluidics and Membrane. , 2016, , .		0
52	Simple, lowâ€cost fabrication of semiâ€circular channel using the surface tension of solder paste and its application to microfluidic valves. Electrophoresis, 2018, 39, 1460-1465.	1.3	0
53	Liquid Metal Composites with Anisotropic and Unconventional Piezoconductivity. SSRN Electronic Journal, 0, , .	0.4	0