Yanlin He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5015507/publications.pdf

Version: 2024-02-01

		304368	360668
55	1,517	22	35
papers	citations	h-index	g-index
50	50	50	2215
59	59	59	2215
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	An estrogen-sensitive hypothalamus-midbrain neural circuit controls thermogenesis and physical activity. Science Advances, 2022, 8, eabk0185.	4.7	11
2	Protein tyrosine phosphatase receptor \hat{l}' serves as the orexigenic asprosin receptor. Cell Metabolism, 2022, 34, 549-563.e8.	7.2	20
3	Functional coupling of TRPM2 and extrasynaptic NMDARs exacerbates excitotoxicity in ischemic brain injury. Neuron, 2022, 110, 1944-1958.e8.	3.8	35
4	A D2 to D1 shift in dopaminergic inputs to midbrain 5-HT neurons causes anorexia in mice. Nature Neuroscience, 2022, 25, 646-658.	7.1	21
5	Paraventricular Vitamin D Receptors Are Required for Glucose Tolerance in Males but Not Females. Frontiers in Endocrinology, 2022, 13, .	1.5	2
6	AgRP neurons trigger long-term potentiation and facilitate food seeking. Translational Psychiatry, 2021, 11, 11.	2.4	22
7	Reciprocal control of obesity and anxiety–depressive disorder via a GABA and serotonin neural circuit. Molecular Psychiatry, 2021, 26, 2837-2853.	4.1	49
8	REV-ERB in GABAergic neurons controls diurnal hepatic insulin sensitivity. Nature, 2021, 592, 763-767.	13.7	40
9	A hindbrain dopaminergic neural circuit prevents weight gain by reinforcing food satiation. Science Advances, 2021, 7, .	4.7	13
10	Barbadin potentiates long-term effects of lorcaserin on POMC neurons and weight loss. Journal of Neuroscience, 2021, 41, JN-RM-3210-20.	1.7	11
11	Deciphering an AgRP-serotoninergic neural circuit in distinct control of energy metabolism from feeding. Nature Communications, 2021, 12, 3525.	5. 8	47
12	5-HT recruits distinct neurocircuits to inhibit hunger-driven and non-hunger-driven feeding. Molecular Psychiatry, 2021, 26, 7211-7224.	4.1	17
13	Eating for hunger or pleasure: a Serotonin Model. Journal of Molecular Cell Biology, 2021, 13, 693-694.	1.5	O
14	Targeting the T-type calcium channel Cav3.2 in GABAergic arcuate nucleus neurons to treat obesity. Molecular Metabolism, 2021, 54, 101391.	3.0	5
15	Hypothalamic steroid receptor coactivator-2 regulates adaptations to fasting and overnutrition. Cell Reports, 2021, 37, 110075.	2.9	8
16	A POMC-originated circuit regulates stress-induced hypophagia, depression, and anhedonia. Molecular Psychiatry, 2020, 25, 1006-1021.	4.1	64
17	$17\hat{l}^2$ -estradiol promotes acute refeeding in hungry mice via membrane-initiated ER \hat{l} ± signaling. Molecular Metabolism, 2020, 42, 101053.	3.0	21
18	Novel Targets in Glucose Homeostasis and Obesity—Lesson from Rare Mutations. Current Diabetes Reports, 2020, 20, 66.	1.7	1

#	Article	IF	CITATIONS
19	Estrogen-sensitive medial preoptic area neurons coordinate torpor in mice. Nature Communications, 2020, 11, 6378.	5.8	49
20	Vitamin D actions in neurons require the PI3K pathway for both enhancing insulin signaling and rapid depolarizing effects. Journal of Steroid Biochemistry and Molecular Biology, 2020, 200, 105690.	1.2	10
21	Estrogen receptor-α expressing neurons in the ventrolateral VMH regulate glucose balance. Nature Communications, 2020, 11, 2165.	5.8	48
22	1997-P: Bidirectional Regulation of Energy Homeostasis Mediated by Estrogen Receptor a and ß in the Medial Amygdala. Diabetes, 2020, 69, 1997-P.	0.3	0
23	Loss of function of NCOR1 and NCOR2 impairs memory through a novel GABAergic hypothalamus–CA3 projection. Nature Neuroscience, 2019, 22, 205-217.	7.1	54
24	Steroid receptor coactivator-1 modulates the function of Pomc neurons and energy homeostasis. Nature Communications, 2019, 10, 1718.	5.8	45
25	Brain Serotonin and Energy Homeostasis. , 2019, , 307-334.		1
26	TAp63 contributes to sexual dimorphism in POMC neuron functions and energy homeostasis. Nature Communications, 2018, 9, 1544.	5.8	64
27	Cyproheptadine Regulates Pyramidal Neuron Excitability in Mouse Medial Prefrontal Cortex. Neuroscience Bulletin, 2018, 34, 759-768.	1.5	0
28	NRG1-Fc improves metabolic health via dual hepatic and central action. JCI Insight, 2018, 3, .	2.3	37
29	Preoptic leptin signaling modulates energy balance independent of body temperature regulation. ELife, 2018, 7, .	2.8	28
30	TAp63 in Mature POMC Neurons Regulates Glucose and Energy Homeostasis. Diabetes, 2018, 67, 1796-P.	0.3	0
31	Estrogen-Responsive Neurons in the Ventrolateral VMH Regulate Glucose Balance. Diabetes, 2018, 67, 374-OR.	0.3	0
32	Vitamin D Enhances Insulin Sensitivity in Neurons. Diabetes, 2018, 67, 278-LB.	0.3	5
33	Activation of Serotonin 2C Receptors in Dopamine Neurons Inhibits Binge-like Eating in Mice. Biological Psychiatry, 2017, 81, 737-747.	0.7	83
34	Melanocortin 4 receptor is not required for estrogenic regulations on energy homeostasis and reproduction. Metabolism: Clinical and Experimental, 2017, 70, 152-159.	1.5	11
35	Heparin Increases Food Intake through AgRP Neurons. Cell Reports, 2017, 20, 2455-2467.	2.9	17
36	Asprosin is a centrally acting orexigenic hormone. Nature Medicine, 2017, 23, 1444-1453.	15.2	216

#	Article	IF	Citations
37	Hypothalamic Vitamin D Improves Glucose Homeostasis and Reduces Weight. Diabetes, 2016, 65, 2732-2741.	0.3	45
38	Estrogen Receptor- \hat{l}_{\pm} in the Medial Amygdala Prevents Stress-Induced Elevations in Blood Pressure in Females. Hypertension, 2016, 67, 1321-1330.	1.3	18
39	A Small Potassium Current in AgRP/NPY Neurons Regulates Feeding Behavior and Energy Metabolism. Cell Reports, 2016, 17, 1807-1818.	2.9	23
40	PI3K in the ventromedial hypothalamic nucleus mediates estrogenic actions on energy expenditure in female mice. Scientific Reports, 2016, 6, 23459.	1.6	32
41	Visualizing estrogen receptor-α-expressing neurons using a new ERα-ZsGreen reporter mouse line. Metabolism: Clinical and Experimental, 2016, 65, 522-532.	1.5	25
42	Apolipoprotein A-IV Inhibits AgRP/NPY Neurons and Activates Pro-Opiomelanocortin Neurons in the Arcuate Nucleus. Neuroendocrinology, 2016, 103, 476-488.	1.2	20
43	Identification of key amino acid residues responsible for internal and external pH sensitivity of Orai1/STIM1 channels. Scientific Reports, 2015, 5, 16747.	1.6	29
44	Progress in the molecular understanding of central regulation of body weight by estrogens. Obesity, 2015, 23, 919-926.	1.5	27
45	Estrogen receptor–α in medial amygdala neurons regulates body weight. Journal of Clinical Investigation, 2015, 125, 2861-2876.	3.9	81
46	Resveratrol inhibits Kv2.2 currents through the estrogen receptor GPR30-mediated PKC pathway. American Journal of Physiology - Cell Physiology, 2013, 305, C547-C557.	2.1	40
47	Exposure to Extremely Low-Frequency Electromagnetic Fields Modulates Na+ Currents in Rat Cerebellar Granule Cells through Increase of AA/PGE2 and EP Receptor-Mediated cAMP/PKA Pathway. PLoS ONE, 2013, 8, e54376.	1.1	39
48	Sigma-1 Receptor Agonists Directly Inhibit NaV1.2/1.4 Channels. PLoS ONE, 2012, 7, e49384.	1.1	19
49	The antidepressant citalopram inhibits delayed rectifier outward K ⁺ current in mouse cortical neurons. Journal of Neuroscience Research, 2012, 90, 324-336.	1.3	11
50	Cyproheptadine Enhances the IK of Mouse Cortical Neurons through Sigma-1 Receptor-Mediated Intracellular Signal Pathway. PLoS ONE, 2012, 7, e41303.	1.1	11
51	Brain natriuretic peptide modulates the delayed rectifier outward K ⁺ current and promotes the proliferation of mouse schwann cells. Journal of Cellular Physiology, 2011, 226, 440-449.	2.0	2
52	Amoxapine Inhibits the Delayed Rectifier Outward K ⁺ Current in Mouse Cortical Neurons via cAMP/Protein Kinase A Pathways. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 437-445.	1.3	14
53	Bradykinin inhibits the transient outward K+ current in mouse Schwann cells via the cAMP/PKA pathway. American Journal of Physiology - Cell Physiology, 2009, 296, C1364-C1372.	2.1	8
54	Modulation of muscle rNa _v 1.4 Na ⁺ channel isoform by arachidonic acid and its nonâ€metabolized analog. Journal of Cellular Physiology, 2009, 219, 173-182.	2.0	7

#	Article	IF	CITATIONS
55	Hypothalamic Estrogen Signaling and Adipose Tissue Metabolism in Energy Homeostasis. Frontiers in Endocrinology, 0, 13, .	1.5	7