Lara Bossini-Castillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5015368/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immune disease variants modulate gene expression in regulatory CD4+ TÂcells. Cell Genomics, 2022, 2, 100117.	3.0	20
2	Immune disease risk variants regulate gene expression dynamics during CD4+ T cell activation. Nature Genetics, 2022, 54, 817-826.	9.4	57
3	Common Variation in the PIN1 Locus Increases the Genetic Risk to Suffer from Sertoli Cell-Only Syndrome. Journal of Personalized Medicine, 2022, 12, 932.	1.1	0
4	Genomic Risk Score impact on susceptibility to systemic sclerosis. Annals of the Rheumatic Diseases, 2021, 80, 118-127.	0.5	20
5	Effect and in silico characterization of genetic variants associated with severe spermatogenic disorders in a large Iberian cohort. Andrology, 2021, 9, 1151-1165.	1.9	12
6	Evaluation of Male Fertility-Associated Loci in a European Population of Patients with Severe Spermatogenic Impairment. Journal of Personalized Medicine, 2021, 11, 22.	1.1	10
7	A distal enhancer at risk locus 11q13.5 promotes suppression of colitis by Treg cells. Nature, 2020, 583, 447-452.	13.7	40
8	GWAS for systemic sclerosis identifies multiple risk loci and highlights fibrotic and vasculopathy pathways. Nature Communications, 2019, 10, 4955.	5.8	100
9	Chromatin activity at GWAS loci identifies T cell states driving complex immune diseases. Nature Genetics, 2019, 51, 1486-1493.	9.4	81
10	Cross-disorder analysis of schizophrenia and 19 immune-mediated diseases identifies shared genetic risk. Human Molecular Genetics, 2019, 28, 3498-3513.	1.4	65
11	Low RUNX3 expression alters dendritic cell function in patients with systemic sclerosis and contributes to enhanced fibrosis. Annals of the Rheumatic Diseases, 2019, 78, 1249-1259.	0.5	19
12	Histone modifications underlie monocyte dysregulation in patients with systemic sclerosis, underlining the treatment potential of epigenetic targeting. Annals of the Rheumatic Diseases, 2019, 78, 529-538.	0.5	40
13	Gene expression variability across cells and species shapes innate immunity. Nature, 2018, 563, 197-202.	13.7	165
14	Gene-level association analysis of systemic sclerosis: A comparison of African-Americans and White populations. PLoS ONE, 2018, 13, e0189498.	1.1	25
15	Coloc-stats: a unified web interface to perform colocalization analysis of genomic features. Nucleic Acids Research, 2018, 46, W186-W193.	6.5	23
16	Analysis of <i>ATP8B4</i> F436L Missense Variant in a Large Systemic Sclerosis Cohort. Arthritis and Rheumatology, 2017, 69, 1337-1338.	2.9	9
17	Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nature Genetics, 2017, 49, 416-425.	9.4	257
18	Association of MicroRNAâ€618 Expression With Altered Frequency and Activation of Plasmacytoid Dendritic Cells in Patients With Systemic Sclerosis. Arthritis and Rheumatology, 2017, 69, 1891-1902.	2.9	67

#	Article	IF	CITATIONS
19	An MIF Promoter Polymorphism Is Associated with Susceptibility to Pulmonary Arterial Hypertension in Diffuse Cutaneous Systemic Sclerosis. Journal of Rheumatology, 2017, 44, 1453-1457.	1.0	25
20	Influence of <i>TYK2</i> in systemic sclerosis susceptibility: a new <i>locus</i> in the IL-12 pathway. Annals of the Rheumatic Diseases, 2016, 75, 1521-1526.	0.5	41
21	Single Nucleotide Polymorphism Clustering in Systemic Autoimmune Diseases. PLoS ONE, 2016, 11, e0160270.	1.1	4
22	A genome-wide association study of rheumatoid arthritis without antibodies against citrullinated peptides. Annals of the Rheumatic Diseases, 2015, 74, e15-e15.	0.5	62
23	Immunogenetics of systemic sclerosis: Defining heritability, functional variants and shared-autoimmunity pathways. Journal of Autoimmunity, 2015, 64, 53-65.	3.0	61
24	A Large-Scale Genetic Analysis Reveals a Strong Contribution of the HLA Class II Region to Giant Cell Arteritis Susceptibility. American Journal of Human Genetics, 2015, 96, 565-580.	2.6	144
25	Genetics of systemic sclerosis. Seminars in Immunopathology, 2015, 37, 443-451.	2.8	37
26	HLA-DRA variants predict penicillin allergy in genome-wide fine-mapping genotyping. Journal of Allergy and Clinical Immunology, 2015, 135, 253-259.e10.	1.5	72
27	Identification of <i>IL12RB1</i> as a Novel Systemic Sclerosis Susceptibility Locus. Arthritis and Rheumatology, 2014, 66, 3521-3523.	2.9	29
28	A genome-wide association study follow-up suggests a possible role for PPARG in systemic sclerosis susceptibility. Arthritis Research and Therapy, 2014, 16, R6.	1.6	37
29	Immunochip Analysis Identifies Multiple Susceptibility Loci for Systemic Sclerosis. American Journal of Human Genetics, 2014, 94, 47-61.	2.6	182
30	Confirmation of <i>TNIP1</i> but not <i>RHOB</i> and <i>PSORS1C1</i> as systemic sclerosis risk factors in a large independent replication study. Annals of the Rheumatic Diseases, 2013, 72, 602-607.	0.5	56
31	A GWAS follow-up study reveals the association of the IL12RB2 gene with systemic sclerosis in Caucasian populations. Human Molecular Genetics, 2012, 21, 926-933.	1.4	74
32	<i>IRF5</i> polymorphism predicts prognosis in patients with systemic sclerosis. Annals of the Rheumatic Diseases, 2012, 71, 1197-1202.	0.5	72
33	Independent Replication and Metaanalysis of Association Studies Establish TNFSF4 as a Susceptibility Gene Preferentially Associated with the Subset of Anticentromere-positive Patients with Systemic Sclerosis. Journal of Rheumatology, 2012, 39, 997-1003.	1.0	35
34	KCNA5 gene is not confirmed as a systemic sclerosis-related pulmonary arterial hypertension genetic susceptibility factor. Arthritis Research and Therapy, 2012, 14, R273.	1.6	10
35	A multicenter study confirms CD226 gene association with systemic sclerosis-related pulmonary fibrosis. Arthritis Research and Therapy, 2012, 14, R85.	1.6	32
36	Unraveling the genetic component of systemic sclerosis. Human Genetics, 2012, 131, 1023-1037.	1.8	59

#	Article	IF	CITATIONS
37	A rare polymorphism in the gene for Tollâ€like receptor 2 is associated with systemic sclerosis phenotype and increases the production of inflammatory mediators. Arthritis and Rheumatism, 2012, 64, 264-271.	6.7	77
38	A rare polymorphism in Toll Like Receptor 2 is associated with systemic sclerosis phenotype and increases production of inflammatory mediators. Journal of Translational Medicine, 2011, 9, .	1.8	0
39	A replication study confirms the association of <i>TNFSF4 (OX40L)</i> polymorphisms with systemic sclerosis in a large European cohort. Annals of the Rheumatic Diseases, 2011, 70, 638-641.	0.5	63
40	Confirmation of association of the macrophage migration inhibitory factor gene with systemic sclerosis in a large European population. Rheumatology, 2011, 50, 1976-1981.	0.9	27