

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5015298/publications.pdf Version: 2024-02-01

ΔΡΛΝ SOLÃO

#	Article	IF	CITATIONS
1	Novel geopolymer for use as a sensible storage option in high temperature thermal energy storage systems. AIP Conference Proceedings, 2020, , .	0.3	11
2	Mainstreaming commercial CSP systems: A technology review. Renewable Energy, 2019, 140, 152-176.	4.3	191
3	Benchmarking of useful phase change materials for a building application. Energy and Buildings, 2019, 182, 45-50.	3.1	51
4	Combining biocatalysts to achieve new phase change materials. Application to non-edible animal fat. Molecular Catalysis, 2018, 444, 76-83.	1.0	11
5	Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants. Energies, 2018, 11, 2358.	1.6	62
6	MgSO4·7H2O filled macro cellular foams: An innovative composite sorbent for thermo-chemical energy storage applications for solar buildings. Solar Energy, 2018, 173, 1278-1286.	2.9	52
7	Phase Change Material Selection for Thermal Energy Storage at High Temperature Range between 210 °C and 270 °C. Energies, 2018, 11, 861.	1.6	35
8	Empirical equations for viscosity and specific heat capacity determination of fatty acids. Journal of Energy Storage, 2017, 10, 20-27.	3.9	12
9	New proposed methodology for specific heat capacity determination of materials for thermal energy storage (TES) by DSC. Journal of Energy Storage, 2017, 11, 1-6.	3.9	88
10	The connection between the heat storage capability of PCM as a material property and their performance in real scale applications. Journal of Energy Storage, 2017, 13, 35-39.	3.9	39
11	Fatty acid eutectic mixtures and derivatives from non-edible animal fat as phase change materials. RSC Advances, 2017, 7, 24133-24139.	1.7	40
12	Empirical equation to estimate viscosity of paraffin. Journal of Energy Storage, 2017, 11, 154-161.	3.9	16
13	Ionic compounds derived from crude glycerol: Thermal energy storage capability evaluation. Renewable Energy, 2017, 114, 629-637.	4.3	9
14	Experimental validation of the exact analytical solution to the steady periodic heat transfer problem in a PCM layer. Energy, 2017, 140, 1131-1147.	4.5	34
15	Thermochemical energy storage by consecutive reactions for higher efficient concentrated solar power plants (CSP): Proof of concept. Applied Energy, 2017, 185, 836-845.	5.1	45
16	Review on sorption materials and technologies for heat pumps and thermal energy storage. Renewable Energy, 2017, 110, 3-39.	4.3	160
17	Phase Change Material Selection for Thermal Processes Working under Partial Load Operating Conditions in the Temperature Range between 120 and 200 °C. Applied Sciences (Switzerland), 2017, 7, 722.	1.3	39
18	Health hazard, cycling and thermal stability as key parameters when selecting a suitable phase change material (PCM). Thermochimica Acta, 2016, 627-629, 39-47.	1.2	53

Aran Solé

#	Article	IF	CITATIONS
19	Corrosion evaluation and prevention of reactor materials to contain thermochemical material for thermal energy storage. Applied Thermal Engineering, 2016, 94, 355-363.	3.0	12
20	Review on the methodology used in thermal stability characterization of phase change materials. Renewable and Sustainable Energy Reviews, 2015, 50, 665-685.	8.2	110
21	State of the art on gas–solid thermochemical energy storage systems and reactors for building applications. Renewable and Sustainable Energy Reviews, 2015, 47, 386-398.	8.2	164
22	Corrosion of metal containers for use in PCM energy storage. Renewable Energy, 2015, 76, 465-469.	4.3	105
23	Unconventional experimental technologies used for phase change materials (PCM) characterization: part 2 – morphological and structural characterization, physico-chemical stability and mechanical properties. Renewable and Sustainable Energy Reviews, 2015, 43, 1415-1426.	8.2	33
24	Corrosion of metals and salt hydrates used for thermochemical energy storage. Renewable Energy, 2015, 75, 519-523.	4.3	82
25	Corrosion of metal and metal alloy containers in contact with phase change materials (PCM) for potential heating and cooling applications. Applied Energy, 2014, 125, 238-245.	5.1	97
26	Corrosion Test of Salt Hydrates and Vessel Metals for Thermochemical Energy Storage. Energy Procedia, 2014, 48, 431-435.	1.8	18
27	Stability of sugar alcohols as PCM for thermal energy storage. Solar Energy Materials and Solar Cells, 2014, 126, 125-134.	3.0	176
28	Thermal Stability Test of Sugar Alcohols as Phase Change Materials for Medium Temperature Energy Storage Application. Energy Procedia, 2014, 48, 436-439.	1.8	33
29	Intercomparative tests on phase change materials characterisation with differential scanning calorimeter. Applied Energy, 2013, 109, 415-420.	5.1	117
30	Review of the T -history method to determine thermophysical properties of phase change materials (PCM). Renewable and Sustainable Energy Reviews, 2013, 26, 425-436.	8.2	155
31	Requirements to consider when choosing a thermochemical material for solar energy storage. Solar Energy, 2013, 97, 398-404.	2.9	41
32	Study on differential scanning calorimetry analysis with two operation modes and organic and inorganic and inorganic phase change material (PCM). Thermochimica Acta, 2013, 553, 23-26.	1.2	121
33	New methodology developed for the differential scanning calorimetry analysis of polymeric matrixes incorporating phase change materials. Measurement Science and Technology, 2012, 23, 085606.	1.4	21
34	Parameters to take into account when developing a new thermochemical energy storage system. Energy Procedia, 2012, 30, 380-387.	1.8	20