Gwennou Coupier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5015/publications.pdf Version: 2024-02-01

CWENNOU COUDIED

#	Article	IF	CITATIONS
1	Rheology and structure of a suspension of deformable particles in plane Poiseuille flow. Physics of Fluids, 2022, 34, .	4.0	4
2	Spherical oscillations of encapsulated microbubbles: Effect of shell compressibility and anisotropy. Journal of the Acoustical Society of America, 2021, 149, 1240-1257.	1.1	18
3	Post-buckling dynamics of spherical shells. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20210378.	2.1	3
4	Delayed buckling of spherical shells due to viscoelastic knockdown of the critical load. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, .	2.1	5
5	Red Blood Cell Dynamics: The Contribution of Microgravity in the BIOMICS Project. , 2020, , .		1
6	Let's deflate that beach ball. European Physical Journal E, 2019, 42, 129.	1.6	7
7	Dynamics of a large population of red blood cells under shear flow. Journal of Fluid Mechanics, 2019, 864, 408-448.	3.4	33
8	Migration velocity of red blood cells in microchannels. Microvascular Research, 2019, 124, 30-36.	2.5	34
9	Optimal cell transport in straight channels and networks. Physical Review Fluids, 2018, 3, .	2.5	7
10	Blood flow and microgravity. Comptes Rendus - Mecanique, 2017, 345, 78-85.	2.1	14
11	Buckling Instability Causes Inertial Thrust for Spherical Swimmers at All Scales. Physical Review Letters, 2017, 119, 224501.	7.8	21
12	Clusters of red blood cells in microcapillary flow: hydrodynamic versus macromolecule induced interaction. Soft Matter, 2016, 12, 8235-8245.	2.7	24
13	Inversion of hematocrit partition at microfluidic bifurcations. Microvascular Research, 2016, 105, 40-46.	2.5	74
14	Fully automated digital holographic processing for monitoring the dynamics of a vesicle suspension under shear flow. Biomedical Optics Express, 2014, 5, 1554.	2.9	11
15	Pairwise hydrodynamic interactions and diffusion in a vesicle suspension. Physics of Fluids, 2014, 26, .	4.0	19
16	The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows. Scientific Reports, 2014, 4, 4348.	3.3	107
17	Lift and Down-Gradient Shear-Induced Diffusion in Red Blood Cell Suspensions. Physical Review Letters, 2013, 110, 108101.	7.8	88
18	Dynamics of Red Blood Cells in shear flow using digital holographic microscopy with reduced coherence. 2013		0

GWENNOU COUPIER

#	Article	IF	CITATIONS
19	Shear-induced diffusion in a red blood cell suspension. Computer Methods in Biomechanics and Biomedical Engineering, 2012, 15, 34-35.	1.6	1
20	Dynamics of vesicle suspension in shear flow between walls by digital holographic microscopy with a spatially reduced coherent source. , 2012, , .		2
21	Shape Diagram of Vesicles in Poiseuille Flow. Physical Review Letters, 2012, 108, 178106.	7.8	76
22	Efficiency of size-dependent particle separation by pinched flow fractionation. Microfluidics and Nanofluidics, 2012, 13, 697-701.	2.2	12
23	Dynamic of a vesicle suspension under shear flow by digital holographic microscopy. , 2012, , .		Ο
24	Spheres in the vicinity of a bifurcation: elucidating the Zweifach–Fung effect. Journal of Fluid Mechanics, 2011, 674, 359-388.	3.4	85
25	Dynamics of Vesicle Suspensions in Shear Flow Between Walls. Microgravity Science and Technology, 2011, 23, 263-270.	1.4	20
26	Comment on "Elastic constants from microscopic strain fluctuations― Physical Review E, 2010, 81, 013101; discussion 013102.	2.1	1
27	Lateral migration of vesicles in microchannels: effects of walls and shear gradient. Houille Blanche, 2009, 95, 112-119.	0.3	12
28	Hydrodynamic lift of vesicles under shear flow in microgravity. Europhysics Letters, 2008, 83, 24002.	2.0	74
29	Fast measurements of concentration profiles inside deformable objects in microflows with reduced spatial coherence digital holography. Applied Optics, 2008, 47, 5305.	2.1	28
30	Noninertial lateral migration of vesicles in bounded Poiseuille flow. Physics of Fluids, 2008, 20, .	4.0	140
31	Lateral migration and segregation of vesicles with viscosity contrast in simple shear and Poiseuille flows. Materials Research Society Symposia Proceedings, 2008, 1132, 1.	0.1	Ο
32	Single file diffusion enhancement in a fluctuating modulated quasi-1D channel. Europhysics Letters, 2007, 77, 60001.	2.0	23
33	Enhancement of mobilities in a pinned multidomain crystal. Physical Review B, 2007, 75, .	3.2	14
34	Determination of the interactions in confined macroscopic Wigner islands: theory and experiments. European Physical Journal B, 2006, 50, 549-557.	1.5	12
35	Single file diffusion in macroscopic Wigner rings. Physical Review E, 2006, 73, 031112.	2.1	46
36	Publisher's Note: Single file diffusion in macroscopic Wigner rings [Phys. Rev. E73, 031112 (2006)]. Physical Review E, 2006, 73, .	2.1	2

#	Article	IF	CITATIONS
37	Local symmetries and order-disorder transitions in small macroscopic Wigner islands. Physical Review E, 2005, 71, 046105.	2.1	24
38	Relaxation and ordering processes in "macroscopic Wigner crystals― European Physical Journal B, 2004, 39, 61-68.	1.5	11