Hirofumi Yoshino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5014986/publications.pdf Version: 2024-02-01

HIDOFUMI YOSHINO

#	Article	IF	CITATIONS
1	Aberrant expression of microRNAs in bladder cancer. Nature Reviews Urology, 2013, 10, 396-404.	3.8	200
2	Tumor suppressive microRNA-1285 regulates novel molecular targets: Aberrant expression and functional significance in renal cell carcinoma. Oncotarget, 2012, 3, 44-57.	1.8	173
3	The MicroRNA Expression Signature of Bladder Cancer by Deep Sequencing: The Functional Significance of the miR-195/497 Cluster. PLoS ONE, 2014, 9, e84311.	2.5	142
4	Tumorâ€suppressive <i>micro<scp>RNA</scp>â€143/145</i> cluster targets hexokinaseâ€2 in renal cell carcinoma. Cancer Science, 2013, 104, 1567-1574.	3.9	118
5	Dual tumorâ€suppressors <i>miRâ€139â€5p</i> and <i>miRâ€139â€3p</i> targeting <i>matrix metalloprotease in bladder cancer. Cancer Science, 2016, 107, 1233-1242.</i>	1 <u>1</u> ,5/i>	115
6	The tumor-suppressive microRNA-143/145 cluster inhibits cell migration and invasion by targeting GOLM1 in prostate cancer. Journal of Human Genetics, 2014, 59, 78-87.	2.3	112
7	Regulation of <i>UHRF1</i> by dual-strand tumor-suppressor <i>microRNA-145</i> (<i>miR-145-5p</i> and <i>miR-145-3p</i>): inhibition of bladder cancer cell aggressiveness. Oncotarget, 2016, 7, 28460-28487.	1.8	93
8	Tumorâ€suppressive <i>micro<scp>RNA</scp>â€135a</i> inhibits cancer cell proliferation by targeting the <i>câ€<scp>MYC</scp></i> oncogene in renal cell carcinoma. Cancer Science, 2013, 104, 304-312.	3.9	87
9	Epithelial–mesenchymal transition-related microRNA-200s regulate molecular targets and pathways in renal cell carcinoma. Journal of Human Genetics, 2013, 58, 508-516.	2.3	78
10	Tumor suppressive microRNA-1 mediated novel apoptosis pathways through direct inhibition of splicing factor serine/arginine-rich 9 (SRSF9/SRp30c) in bladder cancer. Biochemical and Biophysical Research Communications, 2012, 417, 588-593.	2.1	77
11	The role of microRNAs in bladder cancer. Investigative and Clinical Urology, 2016, 57, S60.	2.0	75
12	miR-218 on the genomic loss region of chromosome 4p15.31 functions as a tumor suppressor in bladder cancer. International Journal of Oncology, 2011, 39, 13-21.	3.3	73
13	The microRNA signature of patients with sunitinib failure: regulation of <i>UHRF1</i> pathways by <i>microRNA-101</i> in renal cell carcinoma. Oncotarget, 2016, 7, 59070-59086.	1.8	66
14	PHGDH as a Key Enzyme for Serine Biosynthesis in HIF2α-Targeting Therapy for Renal Cell Carcinoma. Cancer Research, 2017, 77, 6321-6329.	0.9	60
15	microRNA-210-3p depletion by CRISPR/Cas9 promoted tumorigenesis through revival of TWIST1 in renal cell carcinoma. Oncotarget, 2017, 8, 20881-20894.	1.8	57
16	Expression of the Tumor SuppressivemiRNA-23b/27bCluster is a Good Prognostic Marker in Clear Cell Renal Cell Carcinoma. Journal of Urology, 2014, 192, 1822-1830.	0.4	52
17	Tumour-suppressivemicroRNA-24-1inhibits cancer cell proliferation through targetingFOXM1in bladder cancer. FEBS Letters, 2014, 588, 3170-3179.	2.8	52
18	Regulation of ITGA3 by the dual-stranded microRNA-199 family as a potential prognostic marker in bladder cancer. British Journal of Cancer, 2017, 116, 1077-1087.	6.4	48

HIROFUMI YOSHINO

#	Article	IF	CITATIONS
19	Potential new therapy of Rapalinkâ€1, a new generation mammalian target of rapamycin inhibitor, against sunitinibâ€resistant renal cell carcinoma. Cancer Science, 2020, 111, 1607-1618.	3.9	38
20	Bromodomain protein BRD4 inhibitor JQ1 regulates potential prognostic molecules in advanced renal cell carcinoma. Oncotarget, 2018, 9, 23003-23017.	1.8	28
21	Potential tumor‑suppressive role of microRNA‑99a‑3p in sunitinib‑resistant renal cell carcinoma cells through the regulation of RRM2. International Journal of Oncology, 2019, 54, 1759-1770.	3.3	24
22	HRAS as a potential therapeutic target of salirasib RAS inhibitor in bladder cancer. International Journal of Oncology, 2018, 53, 725-736.	3.3	22
23	Targeting NPL4 via drug repositioning using disulfiram for the treatment of clear cell renal cell carcinoma. PLoS ONE, 2020, 15, e0236119.	2.5	20
24	Oncogenic effects of RAB27B through exosome independent function in renal cell carcinoma including sunitinib-resistant. PLoS ONE, 2020, 15, e0232545.	2.5	19
25	EHHADH contributes to cisplatin resistance through regulation by tumor-suppressive microRNAs in bladder cancer. BMC Cancer, 2021, 21, 48.	2.6	19
26	Downregulation of microRNA-1274a induces cell apoptosis through regulation of BMPR1B in clear cell renal cell carcinoma. Oncology Reports, 2017, 39, 173-181.	2.6	18
27	Dynamic compartmentalization of purine nucleotide metabolic enzymes at leading edge in highly motile renal cell carcinoma. Biochemical and Biophysical Research Communications, 2019, 516, 50-56.	2.1	17
28	Characterization of <i>PHGDH</i> expression in bladder cancer: potential targeting therapy with gemcitabine/cisplatin and the contribution of promoter DNA hypomethylation. Molecular Oncology, 2020, 14, 2190-2202.	4.6	17
29	Tumor‑suppressive microRNA‑223 targets WDR62 directly in bladder cancer. International Journal of Oncology, 2019, 54, 2222-2236.	3.3	16
30	<i>microRNAâ€99aâ€5p</i> induces cellular senescence in gemcitabineâ€resistant bladder cancer by targeting <i>SMARCD1</i> . Molecular Oncology, 2022, 16, 1329-1346.	4.6	13
31	Anatomical Variations of the Left Renal Vein During Laparoscopic Donor Nephrectomy. Transplantation Proceedings, 2019, 51, 1311-1313.	0.6	6
32	Oncological outcome of neoadjuvant low-dose estramustine plus LHRH agonist/antagonist followed by extended radical prostatectomy for Japanese patients with high-risk localized prostate cancer: a prospective single-arm study. Japanese Journal of Clinical Oncology, 2020, 50, 66-72.	1.3	5
33	Is It Safe to Use the Same Scissors After Accidental Tumor Incision During Partial Nephrectomy? Results of <i>In Vitro</i> and <i>In Vivo</i> Experiments. Journal of Endourology, 2017, 31, 391-395.	2.1	4
34	Targeting of the glutamine transporter SLC1A5 induces cellular senescence in clear cell renal cell carcinoma. Biochemical and Biophysical Research Communications, 2022, 611, 99-106.	2.1	4
35	Oral Propranolol in a Child With Infantile Hemangioma of the Urethra. Urology, 2018, 122, 165-168.	1.0	3
36	Significance of preoperative screening of deep vein thrombosis and its indications for patients undergoing urological surgery. Investigative and Clinical Urology, 2021, 62, 166.	2.0	0