Yuan-Cheng Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5014894/publications.pdf

Version: 2024-02-01

687363 752698 20 750 13 20 citations h-index g-index papers 21 21 21 833 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Quantum Dots: Electrochemiluminescent and Photoelectrochemical Bioanalysis. Analytical Chemistry, 2015, 87, 9520-9531.	6.5	200
2	Alkaline Phosphatase Tagged Antibodies on Gold Nanoparticles/TiO ₂ Nanotubes Electrode: A Plasmonic Strategy for Label-Free and Amplified Photoelectrochemical Immunoassay. Analytical Chemistry, 2016, 88, 5626-5630.	6.5	96
3	DNA Labeling Generates a Unique Amplification Probe for Sensitive Photoelectrochemical Immunoassay of HIV-1 p24 Antigen. Analytical Chemistry, 2015, 87, 5496-5499.	6.5	70
4	Photoelectrochemical Bioanalysis Platform of Gold Nanoparticles Equipped Perovskite Bi ₄ NbO ₈ Cl. Analytical Chemistry, 2017, 89, 7869-7875.	6.5	62
5	Semiconducting CuO Nanotubes: Synthesis, Characterization, and Bifunctional Photocathodic Enzymatic Bioanalysis. Analytical Chemistry, 2018, 90, 5439-5444.	6.5	50
6	Three-Dimensional TiO ₂ @Cu ₂ O@Nickel Foam Electrodes: Design, Characterization, and Validation of O ₂ -Independent Photocathodic Enzymatic Bioanalysis. ACS Applied Materials & Design, 11, 25702-25707.	8.0	43
7	An ultrasensitive energy-transfer based photoelectrochemical protein biosensor. Chemical Communications, 2016, 52, 3034-3037.	4.1	33
8	Three-Dimensional CdS@Carbon Fiber Networks: Innovative Synthesis and Application as a General Platform for Photoelectrochemical Bioanalysis. Analytical Chemistry, 2019, 91, 6419-6423.	6.5	29
9	Ferroelectric Perovskite Oxide@TiO ₂ Nanorod Heterostructures: Preparation, Characterization, and Application as a Platform for Photoelectrochemical Bioanalysis. Analytical Chemistry, 2018, 90, 10803-10811.	6.5	28
10	3D Semiconducting Polymer/Graphene Networks: Toward Sensitive Photocathodic Enzymatic Bioanalysis. Analytical Chemistry, 2018, 90, 9687-9690.	6.5	27
11	DNA sequence functionalized with heterogeneous core–satellite nanoassembly for novel energy-transfer-based photoelectrochemical bioanalysis. Biosensors and Bioelectronics, 2017, 91, 293-298.	10.1	23
12	Target-Dependent Gating of Nanopores Integrated with H-Cell: Toward A General Platform for Photoelectrochemical Bioanalysis. Analytical Chemistry, 2021, 93, 5001-5004.	6.5	22
13	Three-dimensional CdS nanosheet-enwrapped carbon fiber framework: Towards split-type CuO-mediated photoelectrochemical immunoassay. Biosensors and Bioelectronics, 2020, 148, 111836.	10.1	17
14	Three-Dimensional ZnInS Nanoflakes@Carbon Fiber Frameworks for Biocatalytic Precipitation-Based Photoelectrochemical Immunoassay. ACS Applied Bio Materials, 2020, 3, 1761-1768.	4.6	10
15	Photoelectrochemical Probing of Cellular Interfaces and Evaluation of Cellular H ₂ S Production Based on In Situâ€Generated CdSâ€Enhanced TiO ₂ Nanotube Heterostructures. ChemElectroChem, 2017, 4, 1011-1015.	3.4	9
16	Unique Redox Reaction between CuO Photocathode and Cysteine: Insight into the Mechanism for Cathodic Photoelectrochemical Bioanalysis. ACS Applied Bio Materials, 2019, 2, 2703-2707.	4.6	9
17	Enzymatic photoelectrochemical bioassay based on hierarchical CdS/NiO heterojunction for glucose determination. Mikrochimica Acta, 2021, 188, 243.	5.0	8
18	Recent Advances of Nanostructured Materials for Photoelectrochemical Bioanalysis. Chemosensors, 2022, 10, 14.	3.6	8

#	Article	IF	CITATIONS
19	Photoelectrochemical Cytosensors. Electroanalysis, 2022, 34, 947-955.	2.9	5
20	Recent Advances in Electrochemical Sensor and Biosensors for Environmental Contaminants. Nanotechnology in the Life Sciences, 2020, , 1-31.	0.6	1