Xing Li

List of Publications by Citations

Source: https://exaly.com/author-pdf/5014665/xing-li-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

36	1,762	23	37
papers	citations	h-index	g-index
37 ext. papers	2,422 ext. citations	14.3 avg, IF	5.08 L-index

#	Paper	IF	Citations
36	Tuneable near white-emissive two-dimensional covalent organic frameworks. <i>Nature Communications</i> , 2018 , 9, 2335	17.4	159
35	Highly photoluminescent two-dimensional imine-based covalent organic frameworks for chemical sensing. <i>Chemical Communications</i> , 2018 , 54, 2349-2352	5.8	138
34	Mechanistic Insight into Hydrogen-Bond-Controlled Crystallinity and Adsorption Property of Covalent Organic Frameworks from Flexible Building Blocks. <i>Chemistry of Materials</i> , 2018 , 30, 2299-230	8 9.6	111
33	Covalent Organic Framework with Frustrated Bonding Network for Enhanced Carbon Dioxide Storage. <i>Chemistry of Materials</i> , 2018 , 30, 1762-1768	9.6	109
32	Salicylideneanilines-Based Covalent Organic Frameworks as Chemoselective Molecular Sieves. Journal of the American Chemical Society, 2017 , 139, 8897-8904	16.4	99
31	Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving. <i>Nature Communications</i> , 2020 , 11, 599	17.4	99
30	Single-Atom Coated Separator for Robust Lithium-Sulfur Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 25147-25154	9.5	95
29	Layer-Stacking-Driven Fluorescence in a Two-Dimensional Imine-Linked Covalent Organic Framework. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12922-12929	16.4	81
28	Engineering Local and Global Structures of Single Co Atoms for a Superior Oxygen Reduction Reaction. <i>ACS Catalysis</i> , 2020 , 10, 5862-5870	13.1	76
27	Covalent-Organic-Framework-Based Li-CO Batteries. <i>Advanced Materials</i> , 2019 , 31, e1905879	24	75
26	Carbonyl-based polyimide and polyquinoneimide for potassium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 9997-10003	13	69
25	Molecular Engineering of Bandgaps in Covalent Organic Frameworks. <i>Chemistry of Materials</i> , 2018 , 30, 5743-5749	9.6	65
24	Function-oriented synthesis of two-dimensional (2D) covalent organic frameworks - from 3D solids to 2D sheets. <i>Chemical Society Reviews</i> , 2020 , 49, 4835-4866	58.5	60
23	Superhydrophobic-oleophobic Ag nanowire platform: an analyte-concentrating and quantitative aqueous and organic toxin surface-enhanced Raman scattering sensor. <i>Analytical Chemistry</i> , 2014 , 86, 10437-44	7.8	56
22	Solution-Processable Covalent Organic Framework Electrolytes for All-Solid-State Li D rganic Batteries. <i>ACS Energy Letters</i> , 2020 , 5, 3498-3506	20.1	51
21	Rapid, Scalable Construction of Highly Crystalline Acylhydrazone Two-Dimensional Covalent Organic Frameworks via Dipole-Induced Antiparallel Stacking. <i>Journal of the American Chemical Society</i> , 2020 , 142, 4932-4943	16.4	48
20	Linkage Engineering by Harnessing Supramolecular Interactions to Fabricate 2D Hydrazone-Linked Covalent Organic Framework Platforms toward Advanced Catalysis. <i>Journal of the American Chemical Society</i> , 2020 , 142, 18138-18149	16.4	44

(2021-2019)

Room-Temperature Magnets Based on 1,3,5-Triazine-Linked Porous Organic Radical Frameworks. <i>CheM</i> , 2019 , 5, 1223-1234	16.2	41
Recent Progress in Covalent Organic Frameworks as Solid-State Ion Conductors 2019 , 1, 327-335		36
Cobalt Single-Atom-Intercalated Molybdenum Disulfide for Sulfide Oxidation with Exceptional Chemoselectivity. <i>Advanced Materials</i> , 2020 , 32, e1906437	24	30
Promoted Glycerol Oxidation Reaction in an Interface-Confined Hierarchically Structured Catalyst. <i>Advanced Materials</i> , 2019 , 31, e1804763	24	29
A High-Performance Lithium Metal Battery with Ion-Selective Nanofluidic Transport in a Conjugated Microporous Polymer Protective Layer. <i>Advanced Materials</i> , 2021 , 33, e2006323	24	27
Single crystal of a one-dimensional metallo-covalent organic framework. <i>Nature Communications</i> , 2020 , 11, 1434	17.4	26
Partitioning the interlayer space of covalent organic frameworks by embedding pseudorotaxanes in their backbones. <i>Nature Chemistry</i> , 2020 , 12, 1115-1122	17.6	23
Enantioselective Alkylation of Glycine Imine Promoted by Amino-Acid-Derived Phosphonium Salts. <i>Asian Journal of Organic Chemistry</i> , 2016 , 5, 1457-1460	3	22
Expedient synthesis of -hydrazone esters and 1-indazole scaffolds through heterogeneous single-atom platinum catalysis. <i>Science Advances</i> , 2019 , 5, eaay1537	14.3	17
A Photoswitchable [2]Rotaxane Array on Graphene Oxide. <i>Asian Journal of Organic Chemistry</i> , 2012 , 1, 314-318	3	16
Highly Enantioselective Conjugate Addition of Glycine Imines to Activated Alkenes Catalyzed by Amino-Acid-Derived Chiral Phosphonium Salts. <i>European Journal of Organic Chemistry</i> , 2016 , 2016, 4298	3-4301	11
Photothermal-responsive [2]rotaxanes. <i>RSC Advances</i> , 2013 , 3, 2341	3.7	11
Iron Single Atom Catalyzed Quinoline Synthesis. Advanced Materials, 2021, 33, e2101382	24	11
Divergent Chemistry Paths for 3D and 1D Metallo-Covalent Organic Frameworks (COFs). <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 11527-11532	16.4	10
The Origin of Dual Emission in Antiparallel-Stacked Two-Dimensional Covalent Organic Frameworks 2020 , 2, 654-657		8
Constructing ambivalent imidazopyridinium-linked covalent organic frameworks 2022 , 1, 382-392		4
Divergent Chemistry Paths for 3D and 1D Metallo-Covalent Organic Frameworks (COFs). <i>Angewandte Chemie</i> , 2020 , 132, 11624-11629	3.6	3
Two-Dimensional Conjugated Covalent Organic Framework Films via Oxidative Clī Coupling Reactions at a Liquid Liquid Interface. <i>Organic Materials</i> , 2021 , 03, 060-066	1.9	1
	Chem, 2019, 5, 1223-1234 Recent Progress in Covalent Organic Frameworks as Solid-State Ion Conductors 2019, 1, 327-335 Cobalt Single-Atom-Intercalated Molybdenum Disulfide for Sulfide Oxidation with Exceptional Chemoselectivity. Advanced Materials, 2020, 32, e1906437 Promoted Glycerol Oxidation Reaction in an Interface-Confined Hierarchically Structured Catalyst. Advanced Materials, 2019, 31, e1804763 A High-Performance Lithium Metal Battery with Ion-Selective Nanofluidic Transport in a Conjugated Microporous Polymer Protective Layer. Advanced Materials, 2021, 33, e2006323 Single crystal of a one-dimensional metallo-covalent organic framework. Nature Communications, 2020, 11, 1434 Partitioning the interlayer space of covalent organic frameworks by embedding pseudorotaxanes in their backbones. Nature Chemistry, 2020, 12, 1115-1122 Enantioselective Alkylation of Glycine Imine Promoted by Amino-Acid-Derived Phosphonium Salts. Asian Journal of Organic Chemistry, 2016, 5, 1457-1460 Expedient synthesis of -hydrazone esters and 1-indazole scaffolds through heterogeneous single-atom platinum catalysis. Science Advances, 2019, 5, eaay1537 A Photoswitchable [2]Rotaxane Array on Graphene Oxide. Asian Journal of Organic Chemistry, 2012, 1, 314-318 Highly Enantioselective Conjugate Addition of Glycine Imines to Activated Alkenes Catalyzed by Amino-Acid-Derived Chiral Phosphonium Salts. European Journal of Organic Chemistry, 2016, 2016, 4298 Photothermal-responsive [2]rotaxanes. RSC Advances, 2013, 3, 2341 Iron Single Atom Catalyzed Quinoline Synthesis. Advanced Materials, 2021, 33, e2101382 Divergent Chemistry Paths for 3D and 1D Metallo-Covalent Organic Frameworks (COFs). Angewandte Chemie, International Edition, 2020, 59, 11527-11532 The Origin of Dual Emission in Antiparallel-Stacked Two-Dimensional Covalent Organic Frameworks 2022, 1, 382-392 Divergent Chemistry Paths for 3D and 1D Metallo-Covalent Organic Frameworks (COFs). Angewandte Chemie, 2020, 132, 11624-11629 Two-Dimensional Conjugated Covalent Or	Recent Progress in Covalent Organic Frameworks as Solid-State Ion Conductors 2019, 1, 327-335 Cobalt Single-Atom-Intercalated Molybdenum Disulfide for Sulfide Oxidation with Exceptional Chemoselectivity. Advanced Materials, 2020, 32, e1906437 Promoted Glycerol Oxidation Reaction in an Interface-Confined Hierarchically Structured Catalyst. Advanced Materials, 2019, 31, e1804763 A High-Performance Lithium Metal Battery with Ion-Selective Nanofluidic Transport in a Conjugated Microporous Polymer Protective Layer. Advanced Materials, 2021, 33, e2006323 24 Single crystal of a one-dimensional metallo-covalent organic framework. Nature Communications, 2020, 11, 1434 Partitioning the interlayer space of covalent organic frameworks by embedding pseudorotaxanes in their backbones. Nature Chemistry, 2020, 12, 1115-1122 Enantioselective Alkylation of Glycine Imine Promoted by Amino-Acid-Derived Phosphonium Salts. Asian Journal of Organic Chemistry, 2016, 5, 1457-1460 Expedient synthesis of -hydrazone esters and 1-indazole scaffolds through heterogeneous single-atom platinum catalysis. Science Advances, 2019, 5, easy1537 14-3 A Photoswitchable [2]Rotaxane Array on Graphene Oxide. Asian Journal of Organic Chemistry, 2012, 1, 314-318 Highly Enantioselective Conjugate Addition of Glycine Imines to Activated Alkenes Catalyzed by Amino-Acid-Derived Chiral Phosphonium Salts. European Journal of Organic Chemistry, 2016, 2016, 4298-43301 Photothermal-responsive [2]rotaxanes. RSC Advances, 2013, 3, 2341 37 Iron Single Atom Catalyzed Quinoline Synthesis. Advanced Materials, 2021, 33, e2101382 24 Divergent Chemistry Paths for 3D and 1D Metallo-Covalent Organic Frameworks (COFs). Angewandte Chemie. International Edition, 2020, 59, 11527-11532 The Origin of Dual Emission in Antiparallel-Stacked Two-Dimensional Covalent Organic Frameworks 2022, 1, 382-392 Divergent Chemiestry Paths for 3D and 1D Metallo-Covalent Organic Frameworks (COFs). Angewandte Chemie, 2020, 132, 11624-11629 Two-Dimensional Conjugated Covalent Org

Genetic Clues on Implantable Cardioverter-Defibrillator Placement in Young-Age Hypertrophic Cardiomyopathy: A Case Report of Novel Mutation and Literature Review.. *Frontiers in Cardiovascular Medicine*, **2021**, 8, 810291

5.4 0