Han Ouyang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5014532/publications.pdf Version: 2024-02-01

ΗΛΝ ΟΠΧΑΝΟ

#	Article	lF	CITATIONS
1	Hybrid nanogenerator based closed-loop self-powered low-level vagus nerve stimulation system for atrial fibrillation treatment. Science Bulletin, 2022, 67, 1284-1294.	9.0	30
2	A Light-Powered Triboelectric Nanogenerator Based on the Photothermal Marangoni Effect. ACS Applied Materials & Interfaces, 2022, 14, 22206-22215.	8.0	8
3	Dynamic real-time imaging of living cell traction force by piezo-phototronic light nano-antenna array. Science Advances, 2021, 7, .	10.3	65
4	Stretchable, Self-Healing, and Skin-Mounted Active Sensor for Multipoint Muscle Function Assessment. ACS Nano, 2021, 15, 10130-10140.	14.6	75
5	A Bioresorbable Dynamic Pressure Sensor for Cardiovascular Postoperative Care. Advanced Materials, 2021, 33, e2102302.	21.0	85
6	Ultrathin Stretchable Triboelectric Nanogenerators Improved by Postcharging Electrode Material. ACS Applied Materials & Interfaces, 2021, 13, 42966-42976.	8.0	50
7	Self-powered technology for next-generation biosensor. Science Bulletin, 2021, 66, 1709-1712.	9.0	32
8	Triboelectric nanogenerator based on degradable materials. EcoMat, 2021, 3, e12072.	11.9	108
9	A Stretchable Highoutput Triboelectric Nanogenerator Improved by MXene Liquid Electrode with High Electronegativity. Advanced Functional Materials, 2020, 30, 2004181.	14.9	147
10	A flexible self-arched biosensor based on combination of piezoelectric and triboelectric effects. Applied Materials Today, 2020, 20, 100699.	4.3	45
11	Emerging Implantable Energy Harvesters and Self-Powered Implantable Medical Electronics. ACS Nano, 2020, 14, 6436-6448.	14.6	223
12	A wearable noncontact freeâ€rotating hybrid nanogenerator for selfâ€powered electronics. InformaÄnÃ- Materiály, 2020, 2, 1191-1200.	17.3	71
13	A 25-year bibliometric study of implantable energy harvesters and self-powered implantable medical electronics researches. Materials Today Energy, 2020, 16, 100386.	4.7	58
14	Flexible and stretchable dual mode nanogenerator for rehabilitation monitoring and information interaction. Journal of Materials Chemistry B, 2020, 8, 3647-3654.	5.8	47
15	A Batteryâ€Like Selfâ€Charge Universal Module for Motional Energy Harvest. Advanced Energy Materials, 2019, 9, 1901875.	19.5	68
16	Cancer Therapy: Highly Efficient In Vivo Cancer Therapy by an Implantable Magnet Triboelectric Nanogenerator (Adv. Funct. Mater. 41/2019). Advanced Functional Materials, 2019, 29, 1970285.	14.9	17
17	Honeycomb Structure Inspired Triboelectric Nanogenerator for Highly Effective Vibration Energy Harvesting and Selfâ€Powered Engine Condition Monitoring. Advanced Energy Materials, 2019, 9, 1902460.	19.5	133
18	Highly Efficient In Vivo Cancer Therapy by an Implantable Magnet Triboelectric Nanogenerator. Advanced Functional Materials, 2019, 29, 1808640.	14.9	92

HAN OUYANG

#	Article	IF	CITATIONS
19	Fully Bioabsorbable Capacitor as an Energy Storage Unit for Implantable Medical Electronics. Advanced Science, 2019, 6, 1801625.	11.2	106
20	A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nature Communications, 2019, 10, 2695.	12.8	413
21	Body-Integrated Self-Powered System for Wearable and Implantable Applications. ACS Nano, 2019, 13, 6017-6024.	14.6	142
22	Symbiotic cardiac pacemaker. Nature Communications, 2019, 10, 1821.	12.8	429
23	Selfâ€Powered Distributed Water Level Sensors Based on Liquid–Solid Triboelectric Nanogenerators for Ship Draft Detecting. Advanced Functional Materials, 2019, 29, 1900327.	14.9	115
24	Bioabsorbable Capacitors: Fully Bioabsorbable Capacitor as an Energy Storage Unit for Implantable Medical Electronics (Adv. Sci. 6/2019). Advanced Science, 2019, 6, 1970035.	11.2	2
25	Self-powered implantable electrical stimulator for osteoblasts' proliferation and differentiation. Nano Energy, 2019, 59, 705-714.	16.0	126
26	The first technology can compete with piezoelectricity to harvest ultrasound energy for powering medical implants. Science Bulletin, 2019, 64, 1565-1566.	9.0	14
27	Transcatheter Selfâ€Powered Ultrasensitive Endocardial Pressure Sensor. Advanced Functional Materials, 2019, 29, 1807560.	14.9	181
28	Endocardial Pressure Sensors: Transcatheter Self-Powered Ultrasensitive Endocardial Pressure Sensor (Adv. Funct. Mater. 3/2019). Advanced Functional Materials, 2019, 29, 1970017.	14.9	5
29	Photothermally tunable biodegradation of implantable triboelectric nanogenerators for tissue repairing. Nano Energy, 2018, 54, 390-399.	16.0	136
30	Assessment of extracellular matrix modulation of cell traction force by using silicon nanowire array. Nano Energy, 2018, 50, 504-512.	16.0	9
31	Fully Bioabsorbable Naturalâ€Materialsâ€Based Triboelectric Nanogenerators. Advanced Materials, 2018, 30, e1801895.	21.0	319
32	A self-powered sterilization system with both instant and sustainable anti-bacterial ability. Nano Energy, 2017, 36, 241-249.	16.0	123
33	The modulation effect of the convexity of silicon topological nanostructures on the growth of mesenchymal stem cells. RSC Advances, 2017, 7, 16977-16983.	3.6	3
34	Flexible piezoelectric nanogenerator in wearable self-powered active sensor for respiration and healthcare monitoring. Semiconductor Science and Technology, 2017, 32, 064004.	2.0	110
35	Thermoâ€Driven Evaporation Selfâ€Assembly and Dynamic Analysis of Homocentric Carbon Nanotube Rings. Small, 2017, 13, 1603642.	10.0	11
36	Selfâ€Powered Pulse Sensor for Antidiastole of Cardiovascular Disease. Advanced Materials, 2017, 29, 1703456.	21.0	360

HAN OUYANG

#	Article	IF	CITATIONS
37	Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Science Advances, 2016, 2, e1501478.	10.3	461
38	Robust Multilayered Encapsulation for High-Performance Triboelectric Nanogenerator in Harsh Environment. ACS Applied Materials & Interfaces, 2016, 8, 26697-26703.	8.0	79
39	A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator. Nano Energy, 2016, 28, 172-178.	16.0	154
40	Biocideâ€Free Antifouling on Insulating Surface by Waveâ€Driven Triboelectrificationâ€Induced Potential Oscillation. Advanced Materials Interfaces, 2016, 3, 1600187.	3.7	45