
## Michael Welsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5013652/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                       | lF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Perspectives on Vascular Regulation of Mechanisms Controlling Selective Immune Cell Function in the Tumor Immune Response. International Journal of Molecular Sciences, 2022, 23, 2313.                                                                                       | 1.8 | 3         |
| 2  | The retirement of Editor-in-Chief Arne Andersson, Upsala Journal of Medical Sciences 2006–2022: an<br>amazing journey under Arne's stewardship. Upsala Journal of Medical Sciences, 2022, 127, .                                                                              | 0.4 | 0         |
| 3  | The Felicitous Success of the Subsection Molecular Oncology of International Journal of Molecular<br>Sciences. International Journal of Molecular Sciences, 2021, 22, 6939.                                                                                                   | 1.8 | 0         |
| 4  | Mouse Breast Carcinoma Monocytic/Macrophagic Myeloid-Derived Suppressor Cell Infiltration as a<br>Consequence of Endothelial Dysfunction in Shb-Deficient Endothelial Cells Increases Tumor Lung<br>Metastasis. International Journal of Molecular Sciences, 2021, 22, 11478. | 1.8 | 6         |
| 5  | Absence of the Shb gene in mixed-lineage leukemia MLL-AF9 cells increases latency in mice despite higher proliferation rates in vitro. Experimental Cell Research, 2020, 397, 112368.                                                                                         | 1.2 | 0         |
| 6  | Pericyte dysfunction due to Shb gene deficiency increases B16F10 melanoma lung metastasis.<br>International Journal of Cancer, 2020, 147, 2634-2644.                                                                                                                          | 2.3 | 6         |
| 7  | The Cdh5-CreERT2 transgene causes conditional Shb gene deletion in hematopoietic cells with consequences for immune cell responses to tumors. Scientific Reports, 2019, 9, 7548.                                                                                              | 1.6 | 10        |
| 8  | Temporal Dynamics of VEGFA-Induced VEGFR2/FAK Co-Localization Depend on SHB. Cells, 2019, 8, 1645.                                                                                                                                                                            | 1.8 | 12        |
| 9  | Leukocyte Differentiation by Histidine-Rich Glycoprotein/Stanniocalcin-2 Complex Regulates Murine<br>Glioma Growth through Modulation of Antitumor Immunity. Molecular Cancer Therapeutics, 2018, 17,<br>1961-1972.                                                           | 1.9 | 16        |
| 10 | Disparate effects of <i>Shb</i> gene deficiency on disease characteristics in murine models of myeloid,<br>B-cell, and T-cell leukemia. Tumor Biology, 2018, 40, 101042831877147.                                                                                             | 0.8 | 4         |
| 11 | Pro-tumoral immune cell alterations in wild type and <i>Shb</i> -deficient mice in response to 4T1<br>breast carcinomas. Oncotarget, 2018, 9, 18720-18733.                                                                                                                    | 0.8 | 7         |
| 12 | Tumor <i>SHB</i> gene expression affects disease characteristics in human acute myeloid leukemia.<br>Tumor Biology, 2017, 39, 101042831772064.                                                                                                                                | 0.8 | 7         |
| 13 | Maintenance of hematopoietic stem cell dormancy: yet another role for the macrophage. Stem Cell<br>Investigation, 2016, 3, 46-46.                                                                                                                                             | 1.3 | 1         |
| 14 | The role of the Src Homology-2 domain containing protein B (SHB) in Î <sup>2</sup> cells. Journal of Molecular<br>Endocrinology, 2016, 56, R21-R31.                                                                                                                           | 1.1 | 16        |
| 15 | Claes Hellerström and Cartesian diver microrespirometry. Upsala Journal of Medical Sciences, 2016,<br>121, 77-80.                                                                                                                                                             | 0.4 | 3         |
| 16 | Identification and characterization of VEGF-A–responsive neutrophils expressing CD49d, VEGFR1, and CXCR4 in mice and humans. Blood, 2015, 126, 2016-2026.                                                                                                                     | 0.6 | 183       |
| 17 | Vascular dysfunction and increased metastasis of B16F10 melanomas in Shb deficient mice as compared with their wild type counterparts. BMC Cancer, 2015, 15, 234.                                                                                                             | 1.1 | 16        |
| 18 | Vascular Endothelial Growth Factor-A-Induced Vascular Permeability and Leukocyte Extravasation. ,<br>2015, , 187-207.                                                                                                                                                         |     | 0         |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | <i>Shb</i> deficiency in endothelium but not in leucocytes is responsible for impaired vascular performance during hindlimb ischaemia. Acta Physiologica, 2015, 214, 200-209.                                                                      | 1.8 | 11        |
| 20 | Absence of Shb impairs insulin secretion by elevated FAK activity in pancreatic islets. Journal of Endocrinology, 2014, 223, 267-275.                                                                                                              | 1.2 | 3         |
| 21 | The Src homology-2 protein Shb modulates focal adhesion kinase signaling in a BCR-ABL<br>myeloproliferative disorder causing accelerated progression of disease. Journal of Hematology and<br>Oncology, 2014, 7, 45.                               | 6.9 | 12        |
| 22 | Absence of the adaptor protein Shb potentiates the <scp>T</scp> helper type 2 response in a mouse model of atopic dermatitis. Immunology, 2014, 143, 33-41.                                                                                        | 2.0 | 12        |
| 23 | Aberrant association between vascular endothelial growth factor receptor-2 and VE-cadherin in<br>response to vascular endothelial growth factor-a in Shb-deficient lung endothelial cells. Cellular<br>Signalling, 2013, 25, 85-92.                | 1.7 | 17        |
| 24 | <scp>VEGFA</scp> and tumour angiogenesis. Journal of Internal Medicine, 2013, 273, 114-127.                                                                                                                                                        | 2.7 | 635       |
| 25 | The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells<br>by regulation of focal adhesion kinase activity. Experimental Cell Research, 2013, 319, 1852-1864.                                            | 1.2 | 13        |
| 26 | SHB deficient mice display an increased GFR and augmented renal arteriolar contractions to both<br>Adenosine and Ang II. FASEB Journal, 2013, 27, 909.14.                                                                                          | 0.2 | 0         |
| 27 | Vascular adaptation to a dysfunctional endothelium as a consequence of Shb deficiency.<br>Angiogenesis, 2012, 15, 469-480.                                                                                                                         | 3.7 | 17        |
| 28 | Heterogeneity among RIPâ€Tag2 insulinomas allows vascular endothelial growth factorâ€A independent<br>tumor expansion as revealed by studies in Shb mutant mice: Implications for tumor angiogenesis.<br>Molecular Oncology, 2012, 6, 333-346.     | 2.1 | 17        |
| 29 | The platelet-derived growth factor (PDGF) family of tyrosine kinase receptors: a Kit to fix the beta cell?. Diabetologia, 2012, 55, 2092-2095.                                                                                                     | 2.9 | 2         |
| 30 | Shb deficient mice display an augmented TH2 response in peripheral CD4+ T cells. BMC Immunology, 2011, 12, 3.                                                                                                                                      | 0.9 | 18        |
| 31 | The Src Homology 2 Domain-Containing Adapter Protein B (SHB) Regulates Mouse Oocyte Maturation.<br>PLoS ONE, 2010, 5, e11155.                                                                                                                      | 1.1 | 17        |
| 32 | Impaired glucose homeostasis in Shbâ^'/â^' mice. Journal of Endocrinology, 2009, 203, 271-279.                                                                                                                                                     | 1.2 | 11        |
| 33 | Dysfunctional Microvasculature as a Consequence of <i>Shb</i> Gene Inactivation Causes Impaired<br>Tumor Growth. Cancer Research, 2009, 69, 2141-2148.                                                                                             | 0.4 | 30        |
| 34 | Increased Hsp70 expression attenuates cytokine-induced cell death in islets of Langerhans from Shb<br>knockout mice. Biochemical and Biophysical Research Communications, 2009, 387, 553-557.                                                      | 1.0 | 12        |
| 35 | Shb Gene Knockdown Increases the Susceptibility of SVR Endothelial Tumor Cells to Apoptotic Stimuli<br>In Vitro and In Vivo. Journal of Investigative Dermatology, 2008, 128, 710-716.                                                             | 0.3 | 15        |
| 36 | Interdependent fibroblast growth factor and activin A signaling promotes the expression of<br>endodermal genes in differentiating mouse embryonic stem cells expressing Src Homology 2-domain<br>inactive Shb. Differentiation, 2008, 76, 443-453. | 1.0 | 11        |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | VEGF Signal Tranduction in Angiogenesis. , 2008, , 205-216.                                                                                                                                                                                        |     | 2         |
| 38 | Glucose intolerance and reduced islet blood flow in transgenic mice expressing the FRK tyrosine<br>kinase under the control of the rat insulin promoter. American Journal of Physiology -<br>Endocrinology and Metabolism, 2007, 292, E1183-E1190. | 1.8 | 16        |
| 39 | A role of FRK in regulation of embryonal pancreatic beta cell formation. Molecular and Cellular<br>Endocrinology, 2007, 270, 73-78.                                                                                                                | 1.6 | 14        |
| 40 | <i>Shb</i> null allele is inherited with a transmission ratio distortion and causes reduced viability in utero. Developmental Dynamics, 2007, 236, 2485-2492.                                                                                      | 0.8 | 24        |
| 41 | Reduced tumor growth in vivo and increased c-Abl activity in PC3 prostate cancer cells overexpressing the Shb adapter protein. BMC Cancer, 2007, 7, 161.                                                                                           | 1.1 | 7         |
| 42 | Consequences of Shb and c-Abl interactions for cell death in response to various stress stimuli.<br>Experimental Cell Research, 2007, 313, 284-291.                                                                                                | 1.2 | 17        |
| 43 | SHB and angiogenic factors promote ES cell differentiation to insulin-producing cells. Biochemical and Biophysical Research Communications, 2006, 344, 517-524.                                                                                    | 1.0 | 9         |
| 44 | Platelet-derived growth factor receptor-Î <sup>2</sup> promotes early endothelial cell differentiation. Blood, 2006, 108, 1877-1886.                                                                                                               | 0.6 | 83        |
| 45 | A perfusion protocol for highly efficient transduction of intact pancreatic islets of Langerhans.<br>Diabetologia, 2006, 49, 2388-2391.                                                                                                            | 2.9 | 23        |
| 46 | The SHB Adapter Protein Is Required for Normal Maturation of Mesoderm during in Vitro<br>Differentiation of Embryonic Stem Cells. Journal of Biological Chemistry, 2006, 281, 34484-34491.                                                         | 1.6 | 14        |
| 47 | A role of the protein Cbl in FGF-2-induced angiogenesis in murine brain endothelial cells. Cellular<br>Signalling, 2005, 17, 1433-1438.                                                                                                            | 1.7 | 3         |
| 48 | Shb promotes blood vessel formation in embryoid bodies by augmenting vascular endothelial growth factor receptor-2 and platelet-derived growth factor receptor-β signaling. Experimental Cell Research, 2005, 308, 381-393.                        | 1.2 | 19        |
| 49 | The Adaptor Protein Shb Binds to Tyrosine 1175 in Vascular Endothelial Growth Factor (VEGF)<br>Receptor-2 and Regulates VEGF-dependent Cellular Migration. Journal of Biological Chemistry, 2004,<br>279, 22267-22275.                             | 1.6 | 225       |
| 50 | The tyrosine kinase FRK/RAK participates in cytokine-induced islet cell cytotoxicity. Biochemical<br>Journal, 2004, 382, 261-268.                                                                                                                  | 1.7 | 18        |
| 51 | The Shb adaptor protein causes Src-dependent cell spreading and activation of focal adhesion kinase in murine brain endothelial cells. Cellular Signalling, 2003, 15, 171-179.                                                                     | 1.7 | 30        |
| 52 | The SHB adapter protein is required for efficient multilineage differentiation of mouse embryonic stem cells. Experimental Cell Research, 2003, 286, 40-56.                                                                                        | 1.2 | 16        |
| 53 | The FRK / RAK-SHB Signaling Cascade: A Versatile Signal- Transduction Pathway that Regulates Cell Survival, Differentiation and Proliferation. Current Molecular Medicine, 2003, 3, 313-324.                                                       | 0.6 | 70        |
| 54 | The Shb Adaptor Protein Binds to Tyrosine 766 in the FGFR-1 and Regulates the Ras/MEK/MAPK Pathway via FRS2 Phosphorylation in Endothelial Cells. Molecular Biology of the Cell, 2002, 13, 2881-2893.                                              | 0.9 | 82        |

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | GTK Tyrosine Kinase-induced Alteration of IRS-protein Signalling in Insulin Producing Cells. Molecular<br>Medicine, 2002, 8, 705-713.                                                                                                                       | 1.9 | 9         |
| 56 | Overexpression of the Shb SH2 Domain-Protein in Insulin-Producing Cells Leads to Altered Signaling Through the IRS-1 and IRS-2 Proteins. Molecular Medicine, 2002, 8, 695-704.                                                                              | 1.9 | 14        |
| 57 | Shb links SLP-76 and Vav with the CD3 complex in Jurkat T cells. FEBS Journal, 2002, 269, 3279-3288.                                                                                                                                                        | 0.2 | 17        |
| 58 | GTK tyrosine kinase-induced alteration of IRS-protein signalling in insulin producing cells. Molecular<br>Medicine, 2002, 8, 705-13.                                                                                                                        | 1.9 | 3         |
| 59 | Role of the Src homology 2 domain-containing protein Shb in murine brain endothelial cell proliferation and differentiation. Cell Growth & Differentiation: the Molecular Biology Journal of the American Association for Cancer Research, 2002, 13, 141-8. | 0.8 | 4         |
| 60 | Increased Cytokine-Induced Cytotoxicity of Pancreatic Islet Cells from Transgenic Mice Expressing the<br>Src-like Tyrosine Kinase GTK. Molecular Medicine, 2001, 7, 301-310.                                                                                | 1.9 | 15        |
| 61 | Role of Tyrosine Kinase Signaling for β-Cell Replication and Survival. Upsala Journal of Medical Sciences, 2000, 105, 7-15.                                                                                                                                 | 0.4 | 17        |
| 62 | Endostatin-induced tyrosine kinase signaling through the Shb adaptor protein regulates endothelial cell apoptosis. Blood, 2000, 95, 3403-3411.                                                                                                              | 0.6 | 248       |
| 63 | GTK, a Src-related Tyrosine Kinase, Induces Nerve Growth Factor-independent Neurite Outgrowth in PC12 Cells through Activation of the Rap1 Pathway. Journal of Biological Chemistry, 2000, 275, 29153-29161.                                                | 1.6 | 33        |
| 64 | Shf, a Shb-like Adapter Protein, Is Involved in PDGF-α-Receptor Regulation of Apoptosis. Biochemical and<br>Biophysical Research Communications, 2000, 278, 537-543.                                                                                        | 1.0 | 25        |
| 65 | Platelet-Derived Growth Factor-Mediated Signaling through the Shb Adaptor Protein: Effects on<br>Cytoskeletal Organization. Experimental Cell Research, 2000, 257, 245-254.                                                                                 | 1.2 | 22        |
| 66 | NGF-Dependent Neurite Outgrowth in PC12 Cells Overexpressing the Src Homology 2-Domain Protein<br>Shb Requires Activation of the Rap1 Pathway. Experimental Cell Research, 2000, 259, 370-377.                                                              | 1.2 | 26        |
| 67 | Role of the Bsk/lyk Non-Receptor Tyrosine Kinase for the Control of Growth and Hormone Production in RINm5F Cells. Growth Factors, 2000, 17, 233-247.                                                                                                       | 0.5 | 16        |
| 68 | Endostatin-induced tyrosine kinase signaling through the Shb adaptor protein regulates endothelial cell apoptosis. Blood, 2000, 95, 3403-3411.                                                                                                              | 0.6 | 12        |
| 69 | Transgenic Mice Expressing Shb Adaptor Protein under the Control of Rat Insulin Promoter Exhibit<br>Altered Viability of Pancreatic Islet Cells. Molecular Medicine, 1999, 5, 169-180.                                                                      | 1.9 | 28        |
| 70 | Requirement of the Src Homology 2 Domain Protein Shb for T Cell Receptor-dependent Activation of<br>the Interleukin-2 Gene Nuclear Factor for Activation of T Cells Element in Jurkat T Cells. Journal of<br>Biological Chemistry, 1999, 274, 28050-28057.  | 1.6 | 34        |
| 71 | Stimulation through the T cell receptor leads to interactions between SHB and several signaling proteins. Oncogene, 1998, 16, 891-901.                                                                                                                      | 2.6 | 59        |
| 72 | Mutation of C-Terminal Tyrosine Residues Y497/Y504 of the Src-Family Member Bsk/Iyk Decreases NIH3T3<br>Cell Proliferation. Growth Factors, 1998, 16, 111-124.                                                                                              | 0.5 | 20        |

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently<br>of the integrin-binding motif RGD. Proceedings of the National Academy of Sciences of the United<br>States of America, 1998, 95, 5579-5583.               | 3.3 | 302       |
| 74 | Modulation of Src Homology 3 Proteins by the Proline-Rich Adaptor Protein Shb. Experimental Cell Research, 1997, 231, 269-275.                                                                                                                                    | 1.2 | 4         |
| 75 | Effects of vascular endothelial growth factor on pancreatic duct cell replication and the insulin<br>production of fetal islet-like cell clusters in vitro. Molecular and Cellular Endocrinology, 1997, 126,<br>125-132.                                          | 1.6 | 66        |
| 76 | Effects of Certain Growth Factors on In Vitro Maturation of Rat Fetal Islet-like Structures. Pancreas, 1996, 12, 334-339.                                                                                                                                         | 0.5 | 36        |
| 77 | Control of SHB gene expression by protein phosphorylation. Cellular Signalling, 1996, 8, 55-58.                                                                                                                                                                   | 1.7 | 2         |
| 78 | Apoptosis of NIH3T3 cells overexpressing the Src homology 2 domain protein Shb. Oncogene, 1996, 13, 955-61.                                                                                                                                                       | 2.6 | 28        |
| 79 | Cloning of BSK, a murine FRK homologue with a specific pattern of tissue distribution. Gene, 1995, 152, 239-242.                                                                                                                                                  | 1.0 | 32        |
| 80 | Expression of an insulin/interleukin-1 receptor antagonist hybrid gene in insulin-producing cell lines<br>(HIT-T15 and NIT-1) confers resistance against interleukin-1-induced nitric oxide production Journal of<br>Clinical Investigation, 1995, 95, 1717-1722. | 3.9 | 17        |
| 81 | Molecular interactions of the Src homology 2 domain protein Shb with phosphotyrosine residues, tyrosine kinase receptors and Src homology 3 domain proteins. Oncogene, 1995, 10, 1475-83.                                                                         | 2.6 | 49        |
| 82 | Expression of Protein Tyrosine Kinases in Islet Cells: Possible Role of the Flk-1 Receptor for <i>β</i> -Cell<br>Maturation from Duct Cells. Growth Factors, 1994, 10, 115-126.                                                                                   | 0.5 | 87        |
| 83 | Protein kinase C modulates the insulin secretory process by maintaining a proper function of the beta-cell voltage-activated Ca2+ channels. Journal of Biological Chemistry, 1994, 269, 2743-9.                                                                   | 1.6 | 74        |
| 84 | Shb is a ubiquitously expressed Src homology 2 protein. Oncogene, 1994, 9, 19-27.                                                                                                                                                                                 | 2.6 | 54        |
| 85 | Genetic factors of importance for βâ€cell proliferation. Diabetes/metabolism Reviews, 1993, 9, 25-36.                                                                                                                                                             | 0.4 | 22        |
| 86 | Enhanced stimulus-secretion coupling in polyamine-depleted rat insulinoma cells. An effect involving<br>increased cytoplasmic Ca2+, inositol phosphate generation, and phorbol ester sensitivity Journal of<br>Clinical Investigation, 1993, 92, 1910-1917.       | 3.9 | 30        |
| 87 | A Chimera between Platelet-Derived Growth Factor β-Receptor and Fibroblast Growth Factor<br>Receptor-1 Stimulates Pancreatic β-Cell. DNA Synthesis in the Presence of PDGF-BB. Growth Factors,<br>1992, 6, 93-101.                                                | 0.5 | 10        |
| 88 | Interleukin-1β Increases the Biosynthesis of the Heat Shock Protein hsp70 and Selectively Decreases the<br>Biosynthesis of five Proteins in rat Pancreatic Islets. Autoimmunity, 1991, 9, 33-40.                                                                  | 1.2 | 30        |
| 89 | Isolation of hsp70-binding proteins from bovine muscle. Biochemical and Biophysical Research<br>Communications, 1991, 178, 1-7.                                                                                                                                   | 1.0 | 28        |
| 90 | Exposure of pancreatic islets to different alkylating agents decreases mitochondrial DNA content but<br>only streptozotocin induces long-lasting functional impairment of B-cells. Biochemical<br>Pharmacology, 1991, 42, 2275-2282.                              | 2.0 | 38        |

| #   | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The characterization and use of different antibodies against the hsp70 major heat shock protein family for the development of an immunoassay. Electrophoresis, 1991, 12, 670-673.                                                                                 | 1.3 | 12        |
| 92  | Decrease in insulin-containing secretory granules and mitochondrial gene expression in mouse<br>pancreatic islets maintained in culture following streptozotocin exposure. Vigiliae Christianae, 1991,<br>60, 337-344.                                            | 0.1 | 16        |
| 93  | Decreased mitochondrial gene expression in isolated islets of rats injected neonatally with streptozotocin. Diabetologia, 1991, 34, 626-631.                                                                                                                      | 2.9 | 31        |
| 94  | Biochemical and Molecular Actions of Interleukin-1 on Pancreatic Î <sup>2</sup> -Cells. Autoimmunity, 1991, 10, 241-253.                                                                                                                                          | 1.2 | 79        |
| 95  | Analysis of protein binding to heat shock protein 70 in pancreatic islet cells exposed to elevated temperatures or interleukin 1 beta. Journal of Biological Chemistry, 1991, 266, 9295-8.                                                                        | 1.6 | 21        |
| 96  | Metabolism and β-cell function of rat pancreatic islets exposed to human interleukin-1β in the presence of a high glucose concentration. Immunology Letters, 1990, 26, 245-251.                                                                                   | 1.1 | 44        |
| 97  | Coexpression of the platelet-derived growth factor (PDGF) B chain and the PDGF beta receptor in isolated pancreatic islet cells stimulates DNA synthesis Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 5807-5811.    | 3.3 | 36        |
| 98  | Interleukin-6 Affects Insulin Secretion and Glucose Metabolism of Rat Pancreatic Islets <i>in<br/>Vitro</i> *. Endocrinology, 1990, 126, 1288-1294.                                                                                                               | 1.4 | 121       |
| 99  | Interleukin-1β Depletes Insulin Messenger Ribonucleic Acid and Increases the Heat Shock Protein hsp70<br>in Mouse Pancreatic Islets Without Impairing the Glucose Metabolism*. Endocrinology, 1990, 127,<br>2290-2297.                                            | 1.4 | 71        |
| 100 | Expression of voltage-gated K+ channels in insulin-producing cells. FEBS Letters, 1990, 263, 121-126.                                                                                                                                                             | 1.3 | 31        |
| 101 | Liposome mediated in vitro transfection of pancreatic islet cells. Biomedica Biochimica Acta, 1990, 49, 1157-64.                                                                                                                                                  | 0.1 | 8         |
| 102 | Failure of glucose to elicit a normal secretory response in fetal pancreatic beta cells results from glucose insensitivity of the ATP-regulated K+ channels Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 4505-4509. | 3.3 | 108       |
| 103 | Glucose regulation of insulin gene expression. Diabète & Métabolisme, 1989, 15, 367-71.                                                                                                                                                                           | 0.3 | 10        |
| 104 | Heat-shock treatment of mouse pancreatic islets results in a partial loss of islet cells but no<br>remaining functional impairment among the surviving β cells. Journal of Molecular Endocrinology,<br>1988, 1, 27-31.                                            | 1.1 | 22        |
| 105 | Stimulation of pancreatic islet beta-cell replication by oncogenes Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 116-120.                                                                                            | 3.3 | 42        |
| 106 | Mutations in the guinea pig preproglucagon gene are restricted to a specific portion of the prohormone sequence. FEBS Letters, 1986, 203, 25-30.                                                                                                                  | 1.3 | 62        |
| 107 | Regulation of RNA metabolism in relation to insulin production and oxidative metabolism in mouse pancreatic islets in vitro. Biochimica Et Biophysica Acta - Molecular Cell Research, 1986, 887, 58-68.                                                           | 1.9 | 6         |
| 108 | Stimulation of growth hormone synthesis by glucose in islets of Langerhans isolated from transgenic mice. Journal of Biological Chemistry, 1986, 261, 12915-7.                                                                                                    | 1.6 | 11        |

| #   | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Structure and Evolution of the Insulin Gene. Annual Review of Genetics, 1985, 19, 463-484.                                                                                                                                                             | 3.2 | 255       |
| 110 | Control of insulin gene expression in pancreatic beta-cells and in an insulin-producing cell line,<br>RIN-5F cells. I. Effects of glucose and cyclic AMP on the transcription of insulin mRNA. Journal of<br>Biological Chemistry, 1985, 260, 13585-9. | 1.6 | 125       |
| 111 | Control of insulin gene expression in pancreatic beta-cells and in an insulin-producing cell line,<br>RIN-5F cells. II. Regulation of insulin mRNA stability. Journal of Biological Chemistry, 1985, 260, 13590-4.                                     | 1.6 | 169       |
| 112 | The stimulus-secretion coupling of amino acid-induced insulin release. Molecular and Cellular<br>Biochemistry, 1984, 63, 33-7.                                                                                                                         | 1.4 | 4         |
| 113 | Effects of glucose, leucine and adenosine on insulin release, 45Ca2+ net uptake, NADH/NAD ratios and oxygen consumption of islets isolated from fed and starved mice. Molecular and Cellular Endocrinology, 1983, 30, 51-62.                           | 1.6 | 11        |
| 114 | The effects of glibenclamide on rat islet radioactive nucleotide efflux, ATP contents and respiratory rates. Biochemical Pharmacology, 1983, 32, 2903-2908.                                                                                            | 2.0 | 7         |
| 115 | Streptozotocinâ€induced Impairment of Islet Bâ€Cell Metabolism and its Prevention by a Hydroxyl Radical<br>Scavenger and Inhibitors of Poly(ADPâ€ribose) synthetase. Acta Pharmacologica Et Toxicologica, 1983,<br>53, 392-400.                        | 0.0 | 44        |
| 116 | Respiration and insulin release in mouse pancreatic islets. Biochimica Et Biophysica Acta - Molecular<br>Cell Research, 1982, 721, 178-184.                                                                                                            | 1.9 | 23        |
| 117 | Effects of starvation on oxidative metabolism and insulin release by isolated mouse pancreatic islets.<br>European Journal of Endocrinology, 1982, 101, 227-234.                                                                                       | 1.9 | 10        |
| 118 | Adenosine uptake by isolated mouse pancreatic islets. Biochemical Pharmacology, 1981, 30, 2075-2080.                                                                                                                                                   | 2.0 | 10        |