Zhaohua Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/501338/publications.pdf

Version: 2024-02-01

		394421	4	454955	
29	1,295	19		30	
papers	citations	h-index		g-index	
33	33	33		1755	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Global Analysis of UDP Glucose Pyrophosphorylase (UDPGP) Gene Family in Plants: Conserved Evolution Involved in Cell Death. Frontiers in Plant Science, 2021, 12, 681719.	3.6	5
2	Multi-locus genome-wide association studies for five yield-related traits in rice. BMC Plant Biology, 2021, 21, 364.	3.6	22
3	Genetic Diversity Relationship Between Grain Quality and Appearance in Rice. Frontiers in Plant Science, 2021, 12, 708996.	3.6	13
4	Dissecting Tumor Antigens and Immune Subtypes of Glioma to Develop mRNA Vaccine. Frontiers in Immunology, 2021, 12, 709986.	4.8	34
5	Uncovering the genetic mechanisms regulating panicle architecture in rice with GPWAS and GWAS. BMC Genomics, 2021, 22, 86.	2.8	23
6	Feeding Arsenic-Containing Rice Bran to Growing Pigs: Growth Performance, Arsenic Tissue Distribution, and Arsenic Excretion. International Journal of Environmental Research and Public Health, 2020, 17, 8530.	2.6	2
7	Genome-wide association studies of ionomic and agronomic traits in USDA mini core collection of rice and comparative analyses of different mapping methods. BMC Plant Biology, 2020, 20, 441.	3.6	25
8	Comprehensive Analysis of the Lysine Succinylome and Protein Co-modifications in Developing Rice Seeds. Molecular and Cellular Proteomics, 2019, 18, 2359-2372.	3.8	22
9	Malonylome analysis in developing rice (Oryza sativa) seeds suggesting that protein lysine malonylation is well-conserved and overlaps with acetylation and succinylation substantially. Journal of Proteomics, 2018, 170, 88-98.	2.4	33
10	Proteome-wide lysine acetylation identification in developing rice (Oryza sativa) seeds and protein co-modification by acetylation, succinylation, ubiquitination, and phosphorylation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 451-463.	2.3	28
11	Proteome-wide Analysis of Lysine 2-hydroxyisobutyrylation in Developing Rice (Oryza sativa) Seeds. Scientific Reports, 2017, 7, 17486.	3.3	56
12	Comparative Proteomic Analysis of Cotton Fiber Development and Protein Extraction Method Comparison in Late Stage Fibers. Proteomes, 2016, 4, 7.	3.5	10
13	Proteome Profile of Starch Granules Purified from Rice (Oryza sativa) Endosperm. PLoS ONE, 2016, 11, e0168467.	2.5	36
14	Genome-wide identification and functional prediction of nitrogen-responsive intergenic and intronic long non-coding RNAs in maize (Zea mays L.). BMC Genomics, 2016, 17, 350.	2.8	107
15	Global Analysis of Lysine Acetylation Suggests the Involvement of Protein Acetylation in Diverse Biological Processes in Rice (Oryza sativa). PLoS ONE, 2014, 9, e89283.	2.5	102
16	Nuclear proteome response to cell wall removal in rice (Oryza sativa). Proteome Science, 2013, 11, 26.	1.7	19
17	Polycomb Group Gene OsFIE2 Regulates Rice (Oryza sativa) Seed Development and Grain Filling via a Mechanism Distinct from Arabidopsis. PLoS Genetics, 2013, 9, e1003322.	3.5	88
18	Differential Histone Modification and Protein Expression Associated with Cell Wall Removal and Regeneration in Rice (<i>Oryza sativa</i>). Journal of Proteome Research, 2011, 10, 551-563.	3.7	33

#	# ARTICLE	IF	CITATIONS
1	Transcriptional dynamics during cell wall removal and regeneration reveals key genes involved in cell wall development in rice. Plant Molecular Biology, 2011, 77, 391-406.	3.9	17
2	ARR5 and ARR6 Mediate Tissue Specific Cross-talk between Auxin and Cytokinin in <i>Arabidopsis</i> . American Journal of Plant Sciences, 2011, 02, 549-553.	0.8	7
2	OsMADS6 plays an essential role in endosperm nutrient accumulation and is subject to epigenet regulation in rice (Oryza sativa). Plant Journal, 2010, 64, 604-617.	ic 5.7	90
2	Role of AUX1 in the control of organ identity during in vitro organogenesis and in mediating tissu specific auxin and cytokinin interaction in Arabidopsis. Planta, 2009, 229, 645-657.	ue 3.2	34
2	Comparative analysis of proteome differential regulation during cell dedifferentiation in <i>Arabidopsis</i>>/i> . Proteomics, 2008, 8, 4303-4316.	2.2	26
2	Removal of highâ€abundance proteins for nuclear subproteome studies in rice (<i>Oryza) Tj</i>	ETQq0 0 0 rgBT /Oyerlocl	k 10 Jf 50 542
2	Proteome and Phosphoproteome Differential Expression under Salinity Stress in Rice (Oryzasativ Roots. Journal of Proteome Research, 2007, 6, 1718-1727.	ya) 3.7	155
2	Proteome and phosphoproteome dynamic change during cell dedifferentiation in Arabidopsis. Proteomics, 2007, 7, 1473-1500.	2.2	51
2	Proteome and phosphoproteome analysis of chromatin associated proteins in rice (<i>Oryza</i>) Tj ETQq1 1 0.784314 rg	gBT /Qverlock
2	Molecular Characterization of Subunit 6 of the COP9 Signalosome and Its Role in Multifaceted Developmental Processes in Arabidopsis. Plant Cell, 2001, 13, 2393-2407.	6.6	79
2	A role of <i> Arabidopsis </i> COP9 signalosome in multifaceted developmental processes revealed characterization of its subunit 3. Development (Cambridge), 2001, 128, 4277-4288.	l by the 2.5	69