Dominik Jańczewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5013027/publications.pdf

Version: 2024-02-01

		172207	1	82168	
58	2,602	29		51	
papers	citations	h-index		g-index	
60	60	60		4142	
00	00	00		7172	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Influence of PEG Subunit on the Biological Activity of Ionenes: Synthesis of Novel Polycations, Antimicrobial and Toxicity Studies. Macromolecular Bioscience, 2022, , 2200094.	2.1	4
2	Regulation of Lipid Bilayer Ion Permeability by Antibacterial Polymethyloxazolineâ€Polyethyleneimine Copolymers. ChemBioChem, 2021, 22, 1020-1029.	1.3	3
3	Controlled post-polymerization modification through modulation of repeating unit reactivity: Proof of concept discussed using linear polyethylenimine example. Polymer, 2021, 217, 123452.	1.8	3
4	Influence of lipid bilayer composition on the activity of antimicrobial quaternary ammonium ionenes, the interplay of intrinsic lipid curvature and polymer hydrophobicity, the role of cardiolipin. Colloids and Surfaces B: Biointerfaces, 2021, 207, 112016.	2.5	12
5	Hydrophilic Quaternary Ammonium Ionenes—Is There an Influence of Backbone Flexibility and Topology on Antibacterial Properties?. Macromolecular Bioscience, 2020, 20, e2000063.	2.1	17
6	Brush Swelling and Attachment Strength of Barnacle Adhesion Protein on Zwitterionic Polymer Films as a Function of Macromolecular Structure. Langmuir, 2019, 35, 8085-8094.	1.6	23
7	Unusual enhancement of degradation rate induced by polymer chain elongation in quaternized polyethyleneimine derivatives. Reactive and Functional Polymers, 2019, 137, 96-103.	2.0	6
8	Amphiphilic Polymethyloxazoline–Polyethyleneimine Copolymers: Interaction with Lipid Bilayer and Antibacterial Properties. Macromolecular Bioscience, 2019, 19, e1900254.	2.1	15
9	Tailoring Polyelectrolyte Architecture To Promote Cell Growth and Inhibit Bacterial Adhesion. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7882-7891.	4.0	42
10	Dominant Albumin–Surface Interactions under Independent Control of Surface Charge and Wettability. Langmuir, 2018, 34, 1953-1966.	1.6	20
11	Stable pH responsive layer-by-layer assemblies of partially hydrolysed poly(2-ethyl-2-oxazoline) and poly(acrylic acid) for effective prevention of protein, cell and bacteria surface attachment. Colloids and Surfaces B: Biointerfaces, 2018, 161, 269-278.	2.5	21
12	Effect of Variations in Micropatterns and Surface Modulus on Marine Fouling of Engineering Polymers. ACS Applied Materials & Samp; Interfaces, 2017, 9, 17508-17516.	4.0	48
13	Esters of Tartaric Acid, A New Class of Potential "Double Green―Plasticizers. ACS Sustainable Chemistry and Engineering, 2017, 5, 5999-6007.	3.2	28
14	Tuning charge transport across junctions of ferrocene-containing polymer brushes on ITO by controlling the brush thickness and the tether lengths. European Polymer Journal, 2017, 97, 282-291.	2.6	11
15	Poly(ferrocenylsilane) electrolytes as a gold nanoparticle foundry: "two-in-one―redox synthesis and electrosteric stabilization, and sensing applications. Nanoscale, 2017, 9, 19255-19262.	2.8	26
16	Efficient and robust coatings using poly(2â€methylâ€2â€oxazoline) and its copolymers for marine and bacterial fouling prevention. Journal of Polymer Science Part A, 2016, 54, 275-283.	2.5	39
17	Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample. Nature Nanotechnology, 2016, 11, 817-823.	15.6	89
18	Parallel Control over Surface Charge and Wettability Using Polyelectrolyte Architecture: Effect on Protein Adsorption and Cell Adhesion. ACS Applied Materials & Enterfaces, 2016, 8, 30552-30563.	4.0	136

#	Article	IF	CITATIONS
19	Side chain effects in the packing structure and stiffness of redox-responsive ferrocene-containing polymer brushes. European Polymer Journal, 2016, 83, 517-528.	2.6	17
20	Engineered, Robust Polyelectrolyte Multilayers by Precise Control of Surface Potential for Designer Protein, Cell, and Bacteria Adsorption. Langmuir, 2016, 32, 1338-1346.	1.6	29
21	Polyion Multilayers with Precise Surface Charge Control for Antifouling. ACS Applied Materials & Samp; Interfaces, 2015, 7, 852-861.	4.0	90
22	Fabrication of Copper Nanowire Films and their Incorporation into Polymer Matrices for Antibacterial and Marine Antifouling Applications. Advanced Materials Interfaces, 2015, 2, 1400483.	1.9	31
23	Deposition of zwitterionic polymer brushes in a dense gas medium. Journal of Colloid and Interface Science, 2015, 448, 156-162.	5.0	8
24	Surface charge control for zwitterionic polymer brushes: Tailoring surface properties to antifouling applications. Journal of Colloid and Interface Science, 2015, 452, 43-53.	5.0	125
25	Imprinting of metal receptors into multilayer polyelectrolyte films: fabrication and applications in marine antifouling. Chemical Science, 2015, 6, 372-383.	3.7	13
26	Colloidal, water soluble probes constructed with quantum dots and amphiphilic poly(ferrocenylsilane) for smart redox sensing. European Polymer Journal, 2014, 54, 87-94.	2.6	11
27	Multilayers of Fluorinated Amphiphilic Polyions for Marine Fouling Prevention. Langmuir, 2014, 30, 288-296.	1.6	50
28	Biomimicking Micropatterned Surfaces and Their Effect on Marine Biofouling. Langmuir, 2014, 30, 9165-9175.	1.6	94
29	Barnacle Larvae Exploring Surfaces with Variable Hydrophilicity: Influence of Morphology and Adhesion of "Footprint―Proteins by AFM. ACS Applied Materials & Diterfaces, 2014, 6, 13667-13676.	4.0	32
30	Sulfobetaine-based polymer brushes in marine environment: Is there an effect of the polymerizable group on the antifouling performance?. Colloids and Surfaces B: Biointerfaces, 2014, 120, 118-124.	2.5	59
31	Electrochemically controlled release of molecular guests from redox responsive polymeric multilayers and devices. European Polymer Journal, 2013, 49, 2477-2484.	2.6	43
32	Design and Synthesis of Polymer-Functionalized NIR Fluorescent Dyes–Magnetic Nanoparticles for Bioimaging. ACS Nano, 2013, 7, 6796-6805.	7.3	98
33	Enhanced Stability of Low Fouling Zwitterionic Polymer Brushes in Seawater with Diblock Architecture. Langmuir, 2013, 29, 10859-10867.	1.6	97
34	Cross-Linked Polyelectrolyte Multilayers for Marine Antifouling Applications. ACS Applied Materials & Samp; Interfaces, 2013, 5, 5961-5968.	4.0	92
35	Redox-controlled release of molecular payloads from multilayered organometallic polyelectrolyte films. Journal of Materials Chemistry B, 2013, 1, 828-834.	2.9	32
36	Redox responsive nanotubes from organometallic polymers by template assisted layer by layer fabrication. Nanoscale, 2013, 5, 11692.	2.8	10

#	Article	IF	CITATIONS
37	Disassembly of redox responsive poly(ferrocenylsilane) multilayers: The effect of blocking layers, supporting electrolyte and polyion molar mass. Journal of Colloid and Interface Science, 2013, 405, 256-261.	5.0	16
38	Synthesis and characterization of fluorescent dyes-magnetic nanoparticles for bioimaging applications. Proceedings of SPIE, 2012, , .	0.8	0
39	Organometallic polymeric carriers for redox triggered release of molecular payloads. Journal of Materials Chemistry, 2012, 22, 6429.	6.7	39
40	Enabling Biomedical Research with Designer Quantum Dots. Methods in Molecular Biology, 2012, 811, 245-265.	0.4	7
41	Fabrication and responsive behaviour of Quantum Dot/PNIPAM micropatterns obtained by template copolymerization in water. Journal of Materials Chemistry, 2011, 21, 6487.	6.7	13
42	Synthesis of functionalized amphiphilic polymers for coating quantum dots. Nature Protocols, 2011, 6, 1546-1553.	5.5	92
43	Bimodal magnetic–fluorescent probes for bioimaging. Microscopy Research and Technique, 2011, 74, 563-576.	1.2	83
44	Influence of the length and grafting density of PNIPAM chains on the colloidal and optical properties of quantum dot/PNIPAM assemblies. Nanotechnology, 2011, 22, 265701.	1.3	9
45	Nanostructured thermoresponsive quantum dot/PNIPAM assemblies. European Polymer Journal, 2010, 46, 1397-1403.	2.6	24
46	Covalent assembly of functional inorganic nanoparticles by "click―chemistry in water. Chemical Communications, 2010, 46, 3253.	2.2	26
47	Designer multi-functional comb-polymers for surface engineering of quantum dots on the nanoscale. European Polymer Journal, 2009, 45, 3-9.	2.6	30
48	Introduction of Quantum Dots into PNIPAM microspheres by precipitation polymerization above LCST. European Polymer Journal, 2009, 45, 1912-1917.	2.6	32
49	Designer polymer–quantum dot architectures. Progress in Polymer Science, 2009, 34, 393-430.	11.8	310
50	Stimulus Responsive PNIPAM/QD Hybrid Microspheres by Copolymerization with Surface Engineered QDs. Macromolecules, 2009, 42, 1801-1804.	2.2	57
51	Tripodal diglycolamides as highly efficient extractants for f-elements. New Journal of Chemistry, 2008, 32, 490-495.	1.4	76
52	Novel types of tripodal CMPO ligands: synthesis and extraction. Radiochimica Acta, 2008, 96, .	0.5	5
53	Rapid Access to Tricyclic Ring System Containing Isoindolone by Novel Diastereoselective Intramolecular Aldol-Type Cyclization of N-Substituted Phthalimides. Synlett, 2008, 2008, 3198-3202.	1.0	1
54	Tripodal (N-alkylated) CMP(O) and malonamide ligands: synthesis, extraction of metal ions, and potentiometric studies. New Journal of Chemistry, 2007, 31, 109-120.	1.4	24

#	Article	IF	CITATIONS
55	CMP(O) tripodands: synthesis, potentiometric studies and extractions. New Journal of Chemistry, 2006, 30, 1480-1492.	1.4	41
56	"Click―Chemistry by Microcontact Printing. Angewandte Chemie - International Edition, 2006, 45, 5292-5296.	7.2	186
57	Optimisation of Ethyl(2-phthalimidoethoxy)acetate Synthesis with the Aid of DOE. Organic Process Research and Development, 2005, 9, 18-22.	1.3	12
58	Transesterification of \hat{l}_{\pm} -Substituted Esters Mediated by Potassium Carbonate. Synlett, 2003, 2003, 0420-0422.	1.0	0