
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5013008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal morphology of 3,4-bis(3-nitrofurazan-4-yl)furoxan (DNTF) in a solvent system: molecular dynamics simulation and sensitivity study. CrystEngComm, 2016, 18, 2843-2851.	2.6	73
2	Single-layer assembly of pyrene end-capped terthiophene and its sensing performances to nitroaromatic explosives. Journal of Materials Chemistry, 2012, 22, 1069-1077.	6.7	69
3	Lateral substituent effects on UV stability of high-birefringence liquid crystals with the diaryl-diacetylene core: DFT/TD-DFT study. Liquid Crystals, 2017, 44, 1515-1524.	2.2	56
4	Exploring the Mechanism of Fluorescence Quenching and Aggregation-Induced Emission of a Phenylethylene Derivative by QM (CASSCF and TDDFT) and ONIOM (QM:MM) Calculations. Journal of Physical Chemistry C, 2016, 120, 21850-21857.	3.1	43
5	Water-catalyzed gas-phase hydrogen abstraction reactions of CH3O2 and HO2 with HO2: a computational investigation. Physical Chemistry Chemical Physics, 2011, 13, 20794.	2.8	42
6	First-Principles Determination of Active Sites of Ni Metal-Based Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 39624-39630.	8.0	41
7	Theoretical Study on the Mechanism and Kinetics for the Self-Reaction of C2H5O2 Radicals. Journal of Physical Chemistry A, 2012, 116, 4610-4620.	2.5	36
8	Can a single water molecule really affect the HO2 + NO2 hydrogen abstraction reaction under tropospheric conditions?. Physical Chemistry Chemical Physics, 2015, 17, 15046-15055.	2.8	34
9	A study of solvent selectivity on the crystal morphology of FOX-7 via a modified attachment energy model. RSC Advances, 2016, 6, 59784-59793.	3.6	32
10	Defective h-BN sheet embedded atomic metals as highly active and selective electrocatalysts for NH ₃ fabrication <i>via</i> NO reduction. Physical Chemistry Chemical Physics, 2020, 22, 22627-22634.	2.8	32
11	Catalytic effect of a single water molecule on the atmospheric reaction of HO2 + OH: fact or fiction? A mechanistic and kinetic study. RSC Advances, 2013, 3, 7381.	3.6	30
12	Photochemistry of the Simplest Criegee Intermediate, CH2OO: Photoisomerization Channel toward Dioxirane Revealed by CASPT2 Calculations and Trajectory Surface-Hopping Dynamics. Journal of Physical Chemistry Letters, 2018, 9, 978-981.	4.6	28
13	Theoretical investigation on electronic, optical, and charge transport properties of 7,8,15,16-tetraazaterrylene and its derivatives with electron-attracting substituents. New Journal of Chemistry, 2013, 37, 2925.	2.8	27
14	Water-catalyzed decomposition of the simplest Criegee intermediate CH2OO. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	27
15	Direct dynamics study on the mechanism and the kinetics of the reaction of CH ₃ NH ₂ with OH. International Journal of Quantum Chemistry, 2009, 109, 1566-1575.	2.0	24
16	Formation mechanism of methanesulfonic acid and ammonia clusters: A kinetics simulation study. Atmospheric Environment, 2020, 222, 117161.	4.1	24
17	The catalytic effect of water, water dimers and water trimers on H ₂ S + ³ O ₂ formation by the HO ₂ + HS reaction under tropospheric conditions. Physical Chemistry Chemical Physics, 2016, 18, 17414-17427.	2.8	23
18	Mechanistic and kinetics investigations of oligomer formation from Criegee intermediate reactions with hydroxyalkyl hydroperoxides. Atmospheric Chemistry and Physics, 2019, 19, 4075-4091.	4.9	23

WEN-LIANG WANG

#	Article	IF	CITATIONS
19	Role of water clusters in the reaction of the simplest Criegee intermediate CH2OO with water vapour. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	22
20	Different conical intersections control nonadiabatic photochemistry of fluorene light-driven molecular rotary motor: A CASSCF and spin-flip DFT study. Journal of Chemical Physics, 2016, 145, 244311.	3.0	21
21	Competition between HO ₂ and H ₂ O ₂ Reactions with CH ₂ OO/ <i>anti</i> CH ₃ CHOO in the Oligomer Formation: A Theoretical Perspective. Journal of Physical Chemistry A, 2017, 121, 6981-6991.	2.5	21
22	Water effect on the formation of 3O2 from the self-reaction of two HO2 radicals in tropospheric conditions. Computational and Theoretical Chemistry, 2014, 1045, 135-144.	2.5	20
23	Electrostatic Polarization Energies of Charge Carriers in Organic Molecular Crystals: A Comparative Study with Explicit State-Specific Atomic Polarizability Based AMOEBA Force Field and Implicit Solvent Method. Journal of Chemical Theory and Computation, 2018, 14, 3728-3739.	5.3	20
24	Reactions between hydroxyl-substituted alkylperoxy radicals and Criegee intermediates: correlations of the electronic characteristics of methyl substituents and the reactivity. Physical Chemistry Chemical Physics, 2017, 19, 15073-15083.	2.8	18
25	Triazacoronene Derivatives with Three <i>peri</i> â€Benzopyrano Extensions: Synthesis, Structure, and Properties. European Journal of Organic Chemistry, 2018, 2018, 869-873.	2.4	18
26	Atmospheric Chemistry of Enols: Vinyl Alcohol + OH + O ₂ Reaction Revisited. Journal of Physical Chemistry A, 2019, 123, 3205-3213.	2.5	18
27	Atmospheric chemistry of the self-reaction of HO ₂ radicals: stepwise mechanism <i>versus</i> one-step process in the presence of (H ₂ O) _n (<i>n</i> = 1–3) clusters. Physical Chemistry Chemical Physics, 2019, 21, 24042-24053.	2.8	18
28	Atmospheric implications of hydration on the formation of methanesulfonic acid and methylamine clusters: A theoretical study. Chemosphere, 2020, 244, 125538.	8.2	18
29	Atmospheric implication of synergy in methanesulfonic acid–base trimers: a theoretical investigation. RSC Advances, 2020, 10, 5173-5182.	3.6	18
30	Computational study on the reaction of CH3SCH2CH3 with OH radical: mechanism and enthalpy of formation. Theoretical Chemistry Accounts, 2011, 129, 771-780.	1.4	17
31	Effect of oligomerization reactions of Criegee intermediate with organic acid/peroxy radical on secondary organic aerosol formation from isoprene ozonolysis. Atmospheric Environment, 2018, 187, 218-229.	4.1	17
32	Effects of Protonation and C5 Methylation on the Electrophilic Addition Reaction of Cytosine: A Computational Study. Journal of Physical Chemistry B, 2013, 117, 3-12.	2.6	16
33	Theoretical study on crystal morphologies of 1,1-diamino-2,2-dinitroethene in solvents: Modified attachment energy model and occupancy model. Journal of Molecular Graphics and Modelling, 2018, 85, 262-269.	2.4	16
34	Theoretical Understanding of Electrocatalytic Hydrogen Production Performance by Low-Dimensional Metal–Organic Frameworks on the Basis of Resonant Charge-Transfer Mechanisms. Journal of Physical Chemistry Letters, 2019, 10, 6955-6961.	4.6	15
35	Computational study on the mechanism for the gasâ€phase reaction of dimethyl disulfide with OH. International Journal of Quantum Chemistry, 2011, 111, 644-651.	2.0	13
36	Direct dynamics study on mechanism and kinetics of the biradical selfâ€reaction of HOO. International Journal of Quantum Chemistry, 2011, 111, 3029-3039.	2.0	13

#	Article	IF	CITATIONS
37	Exploring the Mechanism of a Chiral <i>N</i> â€Alkyl Imineâ€Based Lightâ€Driven Molecular Rotary Motor at MSâ€CASPT2//CASSCF and MSâ€CASPT2//(TD) DFT Levels. Chemistry - A European Journal, 2019, 25, 4194-4201.	3.3	13
38	Atmospheric chemistry of CHF2CF2OCH2CF3: Reactions with Cl atoms, fate of CHF2CF2OC•HCF3 radical, formation of OH radical and Criegee Intermediate. Atmospheric Environment, 2020, 242, 117805.	4.1	13
39	Facile Synthesis of ï€â€Extended Viologens: Electronâ€Deficient Polycyclic Azaâ€aromatics. Chemistry - A European Journal, 2017, 23, 7409-7413.	3.3	12
40	Theoretical kinetic investigation of thermal decomposition of nitropropane. Structural Chemistry, 2017, 28, 655-666.	2.0	12
41	Theoretical studies on atmospheric reactions of CH2FO2 with HO2 and HO2â‹H2O complex. Computational and Theoretical Chemistry, 2012, 991, 13-21.	2.5	11
42	Combining the Advantages of Alkene and Azo <i>E</i> – <i>Z</i> Photoisomerizations: Mechanistic Insights into Ketoimine Photoswitches. Journal of Physical Chemistry A, 2017, 121, 2588-2596.	2.5	11
43	Oligomerization reactions for precursors to secondary organic aerosol: Comparison between two formation mechanisms for the oligomeric hydroxyalkyl hydroperoxides. Atmospheric Environment, 2017, 166, 1-8.	4.1	10
44	Explicit Method To Evaluate the External Reorganization Energy of Charge-Transfer Reactions in Oligoacene Crystals Using the State-Specific Polarizable Force Field. Journal of Physical Chemistry A, 2018, 122, 8957-8964.	2.5	10
45	Role of glycine on sulfuric acid-ammonia clusters formation: Transporter or participator. Journal of Environmental Sciences, 2020, 89, 125-135.	6.1	9
46	Density functional theory study on the reaction of triazol-3-one with nitronium: direct nitration versus acidic group-induced nitration. RSC Advances, 2015, 5, 25183-25191.	3.6	8
47	Theoretical Prediction on Photovoltaic Properties of 4Clâ€BPPQ/PC ₆₁ BM System via Density Functional Theory Calculations. Chinese Journal of Chemistry, 2016, 34, 1143-1150.	4.9	8
48	Atmospheric Chemistry of Enols: The Formation Mechanisms of Formic and Peroxyformic Acids in Ozonolysis of Vinyl Alcohol. Journal of Physical Chemistry A, 2020, 124, 4271-4279.	2.5	8
49	Evaluation of electronic polarization energy in oligoacene molecular crystals using the solvated supermolecular approach. Physical Chemistry Chemical Physics, 2017, 19, 14453-14461.	2.8	7
50	Computational study on mechanisms of C2H5O2+OH reaction and properties of C2H5O3H complex. Chemical Research in Chinese Universities, 2017, 33, 623-630.	2.6	7
51	Effects of water, ammonia and formic acid on HO ₂ + Cl reactions under atmospheric conditions: competition between a stepwise route and one elementary step. RSC Advances, 2019, 9, 21544-21556.	3.6	7
52	Hydrogen bond, ring tension and π-conjugation effects: methyl and vinyl substitutions dramatically change the photodynamics of Criegee intermediates. Physical Chemistry Chemical Physics, 2020, 22, 15295-15302.	2.8	7
53	Modification on C217 by auxiliary acceptor toward efficient sensitiser for dye-sensitised solar cells: a theoretical study. Molecular Physics, 2018, 116, 536-545.	1.7	6
54	Reaction mechanism and kinetics of Criegee intermediate CH2OO with CH2 = C(CH3)CHO. Computational and Theoretical Chemistry, 2019, 1170, 112644.	2.5	6

#	Article	IF	CITATIONS
55	Formic acid catalyzed isomerization of protonated cytosine: a lower barrier reaction for tautomer production of potential biological importance. Physical Chemistry Chemical Physics, 2017, 19, 13515-13523.	2.8	5
56	Quantum chemical studies of the OH-initiated oxidation reactions of propenols in the presence of O2. Molecular Physics, 2019, 117, 682-692.	1.7	5
57	Resonance-assisted/impaired anion–i̇́€ interaction: towards the design of novel anion receptors. RSC Advances, 2020, 10, 36181-36191.	3.6	4
58	A 3D interpenetrating supramolecular compound based on Cu ··· N weak coordination: synthesis, crystal structure and DFT investigation. Journal of Coordination Chemistry, 2008, 61, 2916-2925.	2.2	3
59	Theoretical Studies on the Electronic Structures and Optical Properties of Triâ€aryl Endâ€capped Terthiophene Derivatives. Chinese Journal of Chemistry, 2010, 28, 1907-1914.	4.9	3
60	Thermal decomposition and isomerization of 1-heptyl radical: a computational investigation. Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	3
61	Oligomerization Reactions of Criegee Intermediates with Hydroxyalkyl Hydroperoxides: Mechanism, Kinetics, and Structure-Reactivity Relationship. Atmospheric Chemistry and Physics Discussions, 0, , 1-35.	1.0	3
62	The HO ₄ H → O ₃ + H ₂ O reaction catalysed by acidic, neutral and catalysts in the troposphere. Molecular Physics, 2020, 118, e1673912.	l basic 1.7	3
63	Atmospheric oxidation of 1-butene initiated by OH radical: Implications for ozone and nitrous acid formations. Atmospheric Environment, 2021, 244, 118010.	4.1	3
64	The catalytic effects of <scp>H₂O</scp> , basic and acidic catalysts on the gasâ€phase hydrolysis mechanism of carbonyl fluoride (<scp>CF₂O</scp>). International Journal of Quantum Chemistry, 2021, 121, e26657.	2.0	3
65	Theoretical Investigation into Electronic Structures and Charge Transfer Properties of π onjugated System with Different Combinations of Thiophene and Vinyl/Butadiene. Chinese Journal of Chemistry, 2012, 30, 2501-2508.	4.9	2
66	A computational study on the mechanism and kinetics of the reaction between CH ₃ CH ₂ S and OH. RSC Advances, 2014, 4, 62835-62843.	3.6	2
67	Theoretical study on the thermal decomposition and isomerization of 3-Me-1-heptyl radical. Computational and Theoretical Chemistry, 2015, 1063, 10-18.	2.5	2
68	Effects of an acid–alkaline environment on the reactivity of 5-carboxycytosine with hydroxyl radicals. RSC Advances, 2015, 5, 87364-87376.	3.6	2
69	Theoretical investigation on exciton-dissociation and charge-recombination processes of PC61BM-PTDPPSe interface. Journal of Molecular Modeling, 2016, 22, 241.	1.8	2
70	Modeling Photovoltaic Performances of BTBPD-PC61BM System via Density Functional Theory Calculations. Chinese Journal of Chemical Physics, 2017, 30, 268-276.	1.3	2
71	Theoretical estimation of the dissociation energy of CT states at the acenes/C60 interfaces using fragmental-based ALMO method. Computational and Theoretical Chemistry, 2018, 1140, 32-37.	2.5	2
72	Enhanced photovoltaic performances of C219-based dye sensitisers by introducing electron-withdrawing substituents: a density functional theory study. Molecular Physics, 2020, 118, e1636151.	1.7	2

#	Article	IF	CITATIONS
73	Atmospheric oxidation chemistry of hexafluoroisobutylene initiated by OH radical: Kinetics and mechanism. Computational and Theoretical Chemistry, 2021, 1197, 113137.	2.5	2
74	Performable enhancement of C220-based dyes via inserting auxiliary electron acceptors for dye-sensitized solar cells: a theoretical investigation. Journal of Computational Electronics, 2021, 20, 1277-1288.	2.5	2
75	Photodynamics of methyl-vinyl Criegee intermediate: Different conical intersections govern the fates of <i>syn/anti</i> configurations. Chinese Journal of Chemical Physics, 2020, 33, 595-602.	1.3	2
76	Kinetic and Mechanistic Investigations of OH-Initiated Atmospheric Degradation of Methyl Butyl Ketone. Journal of Physical Chemistry A, 2022, 126, 2976-2988.	2.5	2
77	Kinetic and mechanistic investigations of the thermal decomposition of methyl-substituted cycloalkyl radicals. RSC Advances, 2015, 5, 28044-28053.	3.6	1
78	Insight into the acidic group-induced nitration mechanism of 2-methyl-4,6-dihydroxypyrimidine (MDP) with nitronium. RSC Advances, 2016, 6, 80145-80157.	3.6	1
79	The multi-channel reaction of the OH radical with 5-hydroxymethylcytosine: a computational study. RSC Advances, 2016, 6, 13349-13357.	3.6	1
80	Theoretical investigation on photovoltaic properties of PC ₆₁ BMâ€₽DPP5T system as a promising polymerâ€based solar cell. Journal of Physical Organic Chemistry, 2017, 30, e3592.	1.9	1
81	Impact of the acidic group on the hydrolysis of 2-dinitromethylene-5,5-dinitropyrimidine-4,6-dione. RSC Advances, 2018, 8, 13301-13309.	3.6	1
82	Reaction probability and defluorination mechanisms of a potent greenhouse gas SF ₅ CF ₃ attacked by CH ₃ radical: a theoretical study. Molecular Physics, 2018, 116, 2226-2238.	1.7	1
83	Efficient improvement of W05â€based dyes by inserting auxiliary electron acceptors for dyeâ€sensitized solar cells: A theoretical investigation. Journal of Physical Organic Chemistry, 0, , e4290.	1.9	1
84	Impact of Water Molecules on the Isomerization of CH ₃ S(OH)CH ₂ to CH ₃ S(O)CH ₃ : A Computational Investigation. Chinese Journal of Chemistry, 2013, 31, 1341-1347.	4.9	0
85	Theoretical reinvestigation of the ozonolysis mechanism of allyl alcohol. International Journal of Quantum Chemistry, 2020, 120, e26387.	2.0	0
86	Effect of methyl hydrogen sulfate on the formation of sulfuric acidâ€∎mmonia clusters: A theoretical study. Journal of the Chinese Chemical Society, 0, , .	1.4	0