
Hu Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5013004/publications.pdf Version: 2024-02-01

Ни Сы

#	Article	IF	CITATIONS
1	Oxygen vacancies in Co3O4 promote CO2 photoreduction. Applied Catalysis B: Environmental, 2022, 300, 120729.	10.8	105
2	Experimental, theoretical and computational study of binary systems of alkanolamines and alkylamines with cyclohexanol at different temperatures. Journal of Chemical Thermodynamics, 2022, 166, 106668.	1.0	2
3	Nickel sulfide nanorods decorated on graphene as advanced hydrogen evolution electrocatalysts in acidic and alkaline media. Journal of Colloid and Interface Science, 2022, 608, 2633-2640.	5.0	15
4	Interfacial Microenvironment Modulation Enhancing Catalytic Kinetics of Binary Metal Sulfides Heterostructures for Advanced Water Splitting Electrocatalysts. Small Methods, 2022, 6, e2101186.	4.6	45
5	Nitrogen vacancies in polymeric carbon nitrides promote CO2 photoreduction. Journal of Catalysis, 2022, 409, 12-23.	3.1	23
6	Lightâ€Induced Synthesis of Oxygenâ€Vacancyâ€Functionalized Ni(OH) ₂ Nanosheets for Highly Selective CO ₂ Reduction. ChemSusChem, 2022, 15, .	3.6	13
7	Hydrogen-Bonded Aggregates Featuring <i>n</i> → ï€* Electronic Transition for Efficient Visible-Light-Responsive Photocatalysis. ACS Catalysis, 2022, 12, 6276-6284.	5.5	11
8	Design, synthesis, and bioimaging applications of a new class of carborhodamines. Analyst, The, 2021, 146, 64-68.	1.7	5
9	Enhanced performance of Mo ₂ P monolayer as lithium-ion battery anode materials by carbon and nitrogen doping: a first principles study. Physical Chemistry Chemical Physics, 2021, 23, 4030-4038.	1.3	26
10	A semi-crystalline carbonaceous structure as a wide-spectrum-responsive photocatalyst for efficient redox catalysis. Chemical Communications, 2021, 57, 5086-5089.	2.2	4
11	Novel poly(p-aminophenol-o-phenylenediamine)/zinc oxide nanocomposites growth on gold electrode: In-situ spectro-electrochemistry and kinetic study. Synthetic Metals, 2021, 274, 116722.	2.1	6
12	General method to stabilize mesophilic proteins in hyperthermal water. IScience, 2021, 24, 102503.	1.9	3
13	Novel uric acid-based nano organocatalyst with phosphorous acid tags: Application for synthesis of new biologically-interest pyridines with indole moieties via a cooperative vinylogous anomeric based oxidation. Molecular Catalysis, 2021, 507, 111549.	1.0	16
14	Role of the English (H6R) Mutation on the Structural Properties of Aβ40 and Aβ42 Owing to the Histidine Tautomeric Effect. ACS Chemical Neuroscience, 2021, 12, 2705-2711.	1.7	2
15	Synthesis and application of [Zr-UiO-66-PDC-SO3H]Cl MOFs to the preparation of dicyanomethylene pyridines via chemical and electrochemical methods. Scientific Reports, 2021, 11, 16817.	1.6	34
16	Insight into the histidine tautomerism effect on heterodimers of Aβ40. Bulletin of the Korean Chemical Society, 2021, 42, 1549-1554.	1.0	3
17	Transformable Helical Self-Assembly for Cancerous Golgi Apparatus Disruption. Nano Letters, 2021, 21, 8455-8465.	4.5	22
18	Anodic electrosynthesis of MIL-53(Al)-N(CH2PO3H2)2 as a mesoporous catalyst for synthesis of novel (N-methyl-pyrrol)-pyrazolo[3,4-b]pyridines via a cooperative vinylogous anomeric based oxidation. Scientific Reports, 2021, 11, 19370.	1.6	33

Ни Ѕні

#	Article	IF	CITATIONS
19	Label-free E-DNA biosensor based on PANi-RGO-G*NPs for detection of cell-free fetal DNA in maternal blood and fetal gender determination in early pregnancy. Biosensors and Bioelectronics, 2021, 189, 113356.	5.3	9
20	Selectively constructing nitrogen vacancy in carbon nitrides for efficient syngas production with visible light. Applied Catalysis B: Environmental, 2021, 297, 120496.	10.8	31
21	Fabrication and design of new redox active azure A/3D graphene aerogel and conductive trypan blue–nickel MOF nanosheet array electrodes for an asymmetric supercapattery. Journal of Materials Chemistry A, 2021, 9, 12853-12869.	5.2	19
22	Design of one-dimensional organic semiconductors with high intrinsic electron mobilities: lessons from computation. Journal of Materials Chemistry C, 2021, 9, 3620-3625.	2.7	2
23	Pickering-Droplet-Derived MOF Microreactors for Continuous-Flow Biocatalysis with Size Selectivity. Journal of the American Chemical Society, 2021, 143, 16641-16652.	6.6	45
24	Assembly of Silicalite-1 Crystals Like Toy Lego Bricks into One-, Two-, and Three-Dimensional Architectures for Enhancing Its Adsorptive Separation and Catalytic Performances. ACS Applied Materials & Interfaces, 2021, 13, 58085-58095.	4.0	5
25	Improving the quantum yields of fluorophores by inhibiting twisted intramolecular charge transfer using electron-withdrawing group-functionalized piperidine auxochromes. Chemical Communications, 2020, 56, 715-718.	2.2	67
26	Pseudocapacitive Charge Storage in MXene–V ₂ O ₅ for Asymmetric Flexible Energy Storage Devices. ACS Applied Materials & Interfaces, 2020, 12, 54791-54797.	4.0	28
27	Fabrication and In Situ Characterization of Au@poly(<i>ortho</i> -aminophenol-co- <i>ortho</i> -phenylenediamine)/tiO ₂ Nanocomposite for Use In Electrochemical Sensing of Ampicillin Antibiotic. Journal of the Electrochemical Society, 2020, 167, 127509.	1.3	2
28	Ratiometric immunoassays built from synergistic photonic absorption of size-diverse semiconducting MoS2 nanostructures. Materials Horizons, 2019, 6, 563-570.	6.4	38
29	Structural and Binding Properties on AÎ ² Mature Fibrils Due to the Histidine Tautomeric Effect. ACS Chemical Neuroscience, 2019, 10, 4612-4618.	1.7	18
30	Hydrodeoxygenation upgrading of bio-oil on Ni-based catalysts with low Ni loading. Chemical Engineering Science, 2019, 208, 115154.	1.9	14
31	Aromatic secondary amine-functionalized fluorescent NO probes: improved detection sensitivity for NO and potential applications in cancer immunotherapy studies. Chemical Science, 2019, 10, 145-152.	3.7	39
32	The influence of external electric fields on charge reorganization energy in organic semiconductors. Chemical Communications, 2019, 55, 2384-2387.	2.2	9
33	An Original Monomer Sampling from a Readyâ€Made Aβ ₄₂ NMR Fibril Suggests a Turnâ€Î²â€6trand Synergetic Seeding Mechanism. ChemPhysChem, 2019, 20, 1649-1660.	1.0	7
34	Intrinsic origin of amyloid aggregation: Behavior of histidine (ÎμÎμÎμ) and (ÎÎÎ) tautomer homodimers of Aβ (1–40). Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 795-801.	1.1	27
35	Tautomerization Effect of Histidines on Oligomer Aggregation of β-Amyloid(1–40/42) during the Early Stage: Tautomerism Hypothesis for Misfolding Protein Aggregation. ACS Chemical Neuroscience, 2019, 10, 2602-2608.	1.7	27
36	Bioinspired Synthesis of Chiral 3,4-Dihydropyranones via S-to-O Acyl-Transfer Reactions. Organic Letters, 2018, 20, 1584-1588.	2.4	24

Ни Ѕні

#	Article	IF	CITATIONS
37	Ambient Degradation of Perylene Diimide-Based Organic Transistors: Hidden Role of Ozone and External Electric Field. Journal of Physical Chemistry C, 2018, 122, 7067-7074.	1.5	2
38	Development of a theranostic prodrug for colon cancer therapy by combining ligand-targeted delivery and enzyme-stimulated activation. Biomaterials, 2018, 155, 145-151.	5.7	85
39	Surface Functional Groups and Electrochemical Behavior in Dimethyl Sulfoxideâ€Đelaminated Ti ₃ C ₂ T _{<i>x</i>} MXene. ChemSusChem, 2018, 11, 3719-3723.	3.6	83
40	Overcoming Drug Resistance by Targeting Cancer Bioenergetics with an Activatable Prodrug. CheM, 2018, 4, 2370-2383.	5.8	85
41	A Si-rhodamine-based near-infrared fluorescent probe for visualizing endogenous peroxynitrite in living cells, tissues, and animals. Journal of Materials Chemistry B, 2018, 6, 4466-4473.	2.9	39
42	Overcoming the Limits of Hypoxia in Photodynamic Therapy: A Carbonic Anhydrase IX-Targeted Approach. Journal of the American Chemical Society, 2017, 139, 7595-7602.	6.6	261
43	Tautomeric Effect of Histidine on the Monomeric Structure of Amyloid β-Peptide(1–42). ACS Chemical Neuroscience, 2017, 8, 669-675.	1.7	35
44	PLK1-Targeted Fluorescent Tumor Imaging with High Signal-to-Background Ratio. ACS Sensors, 2017, 2, 1512-1516.	4.0	20
45	Revealing the importance of nitrogen doping site in enhancing the oxygen reduction reaction on β-graphyne. Carbon, 2017, 123, 415-420.	5.4	37
46	Applying strong external electric field to thiopheneâ€based oligomers: A promising approach to upgrade semiconducting performance. Journal of Computational Chemistry, 2017, 38, 304-311.	1.5	8
47	Reduction potential tuning of first row transition metal MIII/MII (M = Cr, Mn, Fe, Co, Ni) hexadentate complexes for viable aqueous redox flow battery catholytes: A DFT study. Electrochimica Acta, 2017, 246, 156-164.	2.6	8
48	Importance of doping site of B, N, and O in tuning electronic structure of graphynes. Carbon, 2016, 105, 156-162.	5.4	46
49	Tautomeric Effect of Histidine on the Monomeric Structure of Amyloid β-Peptide(1–40). Journal of Physical Chemistry B, 2016, 120, 11405-11411.	1.2	36
50	Coumarin-decorated Schiff base hydrolysis as an efficient driving force for the fluorescence detection of water in organic solvents. Chemical Communications, 2016, 52, 8675-8678.	2.2	71
51	CO 2 absorption mechanism in amine solvents and enhancement of CO 2 capture capability in blended amine solvent. International Journal of Greenhouse Gas Control, 2016, 45, 181-188.	2.3	101
52	Solvent effect on electron and proton transfer in the excited state of a hydrogen bonded phenol–imidazole complex. RSC Advances, 2014, 4, 38551-38557.	1.7	4
53	Zn ²⁺ Effect on Structure and Residual Hydrophobicity of Amyloid β-Peptide Monomers. Journal of Physical Chemistry B, 2014, 118, 10355-10361.	1.2	28