Nadia R Roan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5011889/publications.pdf

Version: 2024-02-01

66 papers 2,290 citations

304368
22
h-index

253896 43 g-index

84 all docs 84 docs citations

84 times ranked 2712 citing authors

#	Article	IF	CITATIONS
1	SARS-CoV-2-Specific T Cells Exhibit Phenotypic Features of Helper Function, Lack of Terminal Differentiation, and High Proliferation Potential. Cell Reports Medicine, 2020, 1, 100081.	3.3	166
2	The Cationic Properties of SEVI Underlie Its Ability To Enhance Human Immunodeficiency Virus Infection. Journal of Virology, 2009, 83, 73-80.	1.5	163
3	Peptides Released by Physiological Cleavage of Semen Coagulum Proteins Form Amyloids that Enhance HIV Infection. Cell Host and Microbe, 2011, 10, 541-550.	5.1	144
4	Limited cross-variant immunity from SARS-CoV-2 Omicron without vaccination. Nature, 2022, 607, 351-355.	13.7	143
5	Semen-mediated enhancement of HIV infection is donor-dependent and correlates with the levels of SEVI. Retrovirology, 2010, 7, 55.	0.9	127
6	Peptide nanofibrils boost retroviral gene transfer and provide a rapid means for concentrating viruses. Nature Nanotechnology, 2013, 8, 130-136.	15.6	125
7	Direct visualization of HIV-enhancing endogenous amyloid fibrils in human semen. Nature Communications, 2014, 5, 3508.	5.8	95
8	Naturally Occurring Fragments from Two Distinct Regions of the Prostatic Acid Phosphatase Form Amyloidogenic Enhancers of HIV Infection. Journal of Virology, 2012, 86, 1244-1249.	1.5	90
9	Distinctive features of SARS-CoV-2-specific T cells predict recovery from severe COVID-19. Cell Reports, 2021, 36, 109414.	2.9	75
10	Semen enhances HIV infectivity and impairs the antiviral efficacy of microbicides. Science Translational Medicine, 2014, 6, 262ra157.	5.8	69
11	Aminoquinoline Surfen Inhibits the Action of SEVI (Semen-derived Enhancer of Viral Infection). Journal of Biological Chemistry, 2010, 285, 1861-1869.	1.6	68
12	Seminal plasma induces global transcriptomic changes associated with cell migration, proliferation and viability in endometrial epithelial cells and stromal fibroblasts. Human Reproduction, 2014, 29, 1255-1270.	0.4	66
13	Mass Cytometric Analysis of HIV Entry, Replication, and Remodeling in Tissue CD4+ T Cells. Cell Reports, 2017, 20, 984-998.	2.9	66
14	Phenotypic analysis of the unstimulated in vivo HIV CD4 T cell reservoir. ELife, 2020, 9, .	2.8	63
15	mRNA vaccine-induced T cells respond identically to SARS-CoV-2 variants of concern but differ in longevity and homing properties depending on prior infection status. ELife, 2021, 10, .	2.8	63
16	Semen amyloids participate in spermatozoa selection and clearance. ELife, 2017, 6, .	2.8	59
17	Liquefaction of Semen Generates and Later Degrades a Conserved Semenogelin Peptide That Enhances HIV Infection. Journal of Virology, 2014, 88, 7221-7234.	1.5	53
18	Mucosal stromal fibroblasts markedly enhance HIV infection of CD4+ T cells. PLoS Pathogens, 2017, 13, e1006163.	2.1	51

#	Article	IF	CITATIONS
19	HIV efficiently infects T cells from the endometrium and remodels them to promote systemic viral spread. ELife, 2020, 9, .	2.8	36
20	Tissue memory CD4+ T cells expressing IL-7 receptor-alpha (CD127) preferentially support latent HIV-1 infection. PLoS Pathogens, 2020, 16, e1008450.	2.1	34
21	Structure, function and antagonism of semen amyloids. Chemical Communications, 2018, 54, 7557-7569.	2.2	32
22	Seminal Plasma and Semen Amyloids Enhance Cytomegalovirus Infection in Cell Culture. Journal of Virology, 2013, 87, 12583-12591.	1.5	28
23	The HIV-1 latent reservoir is largely sensitive to circulating T cells. ELife, 2020, 9, .	2.8	25
24	Seminal plasma promotes decidualization of endometrial stromal fibroblasts in vitro from women with and without inflammatory disorders in a manner dependent on interleukin-11 signaling. Human Reproduction, 2020, 35, 617-640.	0.4	24
25	An Optimized and Validated Method for Isolation and Characterization of Lymphocytes from HIV+ Human Gut Biopsies. AIDS Research and Human Retroviruses, 2017, 33, S-31-S-39.	0.5	23
26	Isolation and Culture of Human Endometrial Epithelial Cells and Stromal Fibroblasts. Bio-protocol, 2015, 5, .	0.2	23
27	Impact of Biological Sex on Immune Activation and Frequency of the Latent HIV Reservoir During Suppressive Antiretroviral Therapy. Journal of Infectious Diseases, 2020, 222, 1843-1852.	1.9	22
28	A Seminal Finding for Understanding HIV Transmission. Cell, 2007, 131, 1044-1046.	13.5	21
29	Structural Characterization of Semen Coagulum-Derived SEM1(86–107) Amyloid Fibrils That Enhance HIV-1 Infection. Biochemistry, 2014, 53, 3267-3277.	1.2	17
30	Comparison of the effect of semen from HIV-infected and uninfected men on CD4+ T-cell infection. Aids, 2016, 30, 1197-1208.	1.0	16
31	Sialyl-LewisX Glycoantigen Is Enriched on Cells with Persistent HIV Transcription during Therapy. Cell Reports, 2020, 32, 107991.	2.9	16
32	Improving preclinical models of HIV microbicide efficacy. Trends in Microbiology, 2015, 23, 445-447.	3.5	15
33	Characterization of HIV-induced remodeling reveals differences in infection susceptibility of memory CD4+ TÂcell subsets inÂvivo. Cell Reports, 2021, 35, 109038.	2.9	15
34	Protracted yet Coordinated Differentiation of Long-Lived SARS-CoV-2-Specific CD8+ T Cells during Convalescence. Journal of Immunology, 2021, 207, 1344-1356.	0.4	14
35	Evaluating a New Class of AKT/mTOR Activators for HIV Latency-Reversing Activity <i>Ex Vivo</i> and <i>In Vivo</i> Journal of Virology, 2021, 95, .	1.5	13
36	Gallic Acid Is an Antagonist of Semen Amyloid Fibrils That Enhance HIV-1 Infection. Journal of Biological Chemistry, 2016, 291, 14045-14055.	1.6	12

#	Article	IF	CITATIONS
37	Measuring the contribution of $\hat{l}^3\hat{l}$ T cells to the persistent HIV reservoir. Aids, 2020, 34, 363-371.	1.0	12
38	Seminal Plasma-Derived Extracellular-Vesicle Fractions from HIV-Infected Men Exhibit Unique MicroRNA Signatures and Induce a Proinflammatory Response in Cells Isolated from the Female Reproductive Tract. Journal of Virology, 2020, 94, .	1.5	12
39	Siglec-9 defines and restrains a natural killer subpopulation highly cytotoxic to HIV-infected cells. PLoS Pathogens, 2021, 17, e1010034.	2.1	12
40	Deep Phenotypic Analysis of Blood and Lymphoid T and NK Cells From HIV+ Controllers and ART-Suppressed Individuals. Frontiers in Immunology, 2022, 13, 803417.	2.2	12
41	Loss of Preexisting Immunological Memory Among Human Immunodeficiency Virus–Infected Women Despite Immune Reconstitution With Antiretroviral Therapy. Journal of Infectious Diseases, 2020, 222, 243-251.	1.9	11
42	Single-cell glycomics analysis by CyTOF-Lec reveals glycan features defining cells differentially susceptible to HIV. ELife, $0,11,$	2.8	11
43	No detectable alloreactive transcriptional responses under standard sample preparation conditions during donor-multiplexed single-cell RNA sequencing of peripheral blood mononuclear cells. BMC Biology, 2021, 19, 10.	1.7	9
44	Hyaluronic acid is a negative regulator of mucosal fibroblast-mediated enhancement of HIV infection. Mucosal Immunology, 2021, 14, 1203-1213.	2.7	8
45	Tissueâ€specific differences in HIV DNA levels and mechanisms that govern HIV transcription in blood, gut, genital tract and liver in ARTâ€treated women. Journal of the International AIDS Society, 2021, 24, e25738.	1.2	8
46	Effects of the levonorgestrel-containing intrauterine device, copper intrauterine device, and levonorgestrel-containing oral contraceptive on susceptibility of immune cells from cervix, endometrium and blood to HIV-1 fusion measured ex vivo. PLoS ONE, 2019, 14, e0221181.	1.1	7
47	Sequence-independent recognition of the amyloid structural motif by GFP protein family. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22122-22127.	3.3	7
48	Single-cell Motility Analysis of Tethered Human Spermatozoa. Bio-protocol, 2019, 9, .	0.2	7
49	Friend or Foe: Innate Sensing of HIV in the Female Reproductive Tract. Current HIV/AIDS Reports, 2016, 13, 53-63.	1.1	5
50	HIV-enhancing Amyloids Are Prevalent in Fresh Semen and Are a Determinant for Semen's Ability to Enhance HIV Infection: Relevance for HIV Transmission. AIDS Research and Human Retroviruses, 2014, 30, A183-A184.	0.5	4
51	Shared Mechanisms Govern HIV Transcriptional Suppression in Circulating CD103 ⁺ and Gut CD4 ⁺ T Cells. Journal of Virology, 2020, 95, .	1.5	4
52	T-cell immune dysregulation and mortality in women with HIV. Journal of Infectious Diseases, 2021, , .	1.9	4
53	Subsets of Tissue CD4 T Cells Display Different Susceptibilities to HIV Infection and Death: Analysis by CyTOF and Single Cell RNA-seq. Frontiers in Immunology, 0, 13, .	2.2	3
54	Common and Divergent Features of T Cells from Blood, Gut, and Genital Tract of Antiretroviral Therapy–Treated HIV+ Women. Journal of Immunology, 2022, 208, 1790-1801.	0.4	2

#	Article	IF	CITATIONS
55	Potent and rapid activation of tropomyosin-receptor kinase A in endometrial stromal fibroblasts by seminal plasmaâ€. Biology of Reproduction, 2018, 99, 336-348.	1.2	1
56	Reliable EstimationÂof CD8 T Cell Inhibition of In Vitro HIV-1 Replication. Frontiers in Immunology, 2021, 12, 666991.	2.2	1
57	Resident T cells stand up to HIV. Science Immunology, 2018, 3, .	5.6	0
58	Reproductive tract immune cells from pregnant women or those using depot medroxyprogesterone acetate show no excess susceptibility to HIV-1: Results of an ex vivo fusion assay. Contraception, 2021, 103, 44-47.	0.8	0
59	Cell-Extrinsic Priming Increases Permissiveness of CD4+ T Cells to Human Immunodeficiency Virus Infection by Increasing C–C Chemokine Receptor Type 5 Co-receptor Expression and Cellular Activation Status. Frontiers in Microbiology, 2021, 12, 763030.	1.5	0
60	CD8 T Cell Virus Inhibition Assay Protocol. Bio-protocol, 2022, 12, e4354.	0.2	0
61	Title is missing!. , 2020, 16, e1008450.		0
62	Title is missing!. , 2020, 16, e1008450.		0
63	Title is missing!. , 2020, 16, e1008450.		0
64	Title is missing!. , 2020, 16, e1008450.		0
65	Title is missing!. , 2020, 16, e1008450.		0
66	Title is missing!. , 2020, 16, e1008450.		0