
Xiaolong Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5011803/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Promotional mechanisms of activity and SO 2 tolerance of Co- or Ni-doped MnOx-CeO 2 catalysts for SCR of NOx with NH 3 at low temperature. Chemical Engineering Journal, 2017, 317, 20-31.	6.6	355
2	Low temperature selective catalytic reduction of NO with NH3 over amorphous MnO catalysts prepared by three methods. Catalysis Communications, 2007, 8, 329-334.	1.6	233
3	Low-temperature selective catalytic reduction of NOX with NH3 over cerium and manganese oxides supported on TiO2–graphene. Chemical Engineering Journal, 2015, 260, 776-784.	6.6	167
4	In-situ DRIFTS for the mechanistic studies of NO oxidation over α-MnO 2 , β-MnO 2 and γ-MnO 2 catalysts. Chemical Engineering Journal, 2017, 322, 525-537.	6.6	165
5	A Review on Selective Catalytic Reduction of NOx by NH3 over Mn–Based Catalysts at Low Temperatures: Catalysts, Mechanisms, Kinetics and DFT Calculations. Catalysts, 2017, 7, 199.	1.6	159
6	Behaviors and kinetics of toluene adsorptionâ€desorption on activated carbons with varying pore structure. Journal of Environmental Sciences, 2018, 67, 104-114.	3.2	150
7	Spontaneous Formation of Asymmetric Oxygen Vacancies in Transition-Metal-Doped CeO ₂ Nanorods with Improved Activity for Carbonyl Sulfide Hydrolysis. ACS Catalysis, 2020, 10, 11739-11750.	5.5	140
8	Improvement of activity, selectivity and H2O&SO2-tolerance of micro-mesoporous CrMn2O4 spinel catalyst for low-temperature NH3-SCR of NOx. Applied Surface Science, 2019, 466, 411-424.	3.1	134
9	Novel Co– or Ni–Mn binary oxide catalysts with hydroxyl groups for NH3–SCR of NOx at low temperature. Applied Surface Science, 2018, 443, 103-113.	3.1	114
10	Copper modified activated coke for mercury removal from coal-fired flue gas. Chemical Engineering Journal, 2016, 286, 585-593.	6.6	106
11	An experimental and theoretical study of the adsorption removal of toluene and chlorobenzene on coconut shell derived carbon. Chemosphere, 2018, 206, 285-292.	4.2	100
12	Formation of active oxygen species on single-atom Pt catalyst and promoted catalytic oxidation of toluene. Nano Research, 2020, 13, 1544-1551.	5.8	89
13	Low temperature catalytic oxidation of nitric oxide over the Mn–CoOx catalyst modified by nonthermal plasma. Catalysis Communications, 2015, 64, 12-17.	1.6	80
14	Manganese Oxides Supported on TiO ₂ –Graphene Nanocomposite Catalysts for Selective Catalytic Reduction of NO _{<i>X</i>} with NH ₃ at Low Temperature. Industrial & Engineering Chemistry Research, 2014, 53, 11601-11610.	1.8	65
15	Effect of Potassium-Precursor Promoters on Catalytic Oxidation Activity of Mn-CoOx Catalysts for NO Removal. Industrial & Engineering Chemistry Research, 2015, 54, 9116-9123.	1.8	64
16	Using CuO-MnOx/AC-H as catalyst for simultaneous removal of Hg° and NO from coal-fired flue gas. Journal of Hazardous Materials, 2019, 364, 700-709.	6.5	58
17	Effect of hierarchical element doping on the low-temperature activity of manganese-based catalysts for NH3-SCR. Journal of Environmental Chemical Engineering, 2020, 8, 104399.	3.3	58
18	Controlled Synthesis of Spinel-Type Mesoporous Mn–Co Rods for SCR of NO _{<i>x</i>} with NH ₃ at Low Temperature. Industrial & Engineering Chemistry Research, 2019, 58, 3606-3617.	1.8	56

#	Article	IF	CITATIONS
19	Facile and fast synthesis of novel Mn2CoO4@rGO catalysts for the NH3-SCR of NOx at low temperature. Chemical Engineering Journal, 2018, 333, 467-476.	6.6	54
20	Evolution mechanism of transition metal in NH3-SCR reaction over Mn-based bimetallic oxide catalysts: Structure-activity relationships. Journal of Hazardous Materials, 2021, 413, 125361.	6.5	54
21	The effect of non-selective oxidation on the Mn2Co1Ox catalysts for NH3-SCR: Positive and non-positive. Chemical Engineering Journal, 2020, 385, 123797.	6.6	52
22	Transition in air pollution, disease burden and health cost in China: A comparative study of long-term and short-term exposure. Environmental Pollution, 2021, 277, 116770.	3.7	52
23	High-efficiency catalytic oxidation of nitric oxide over spherical Mn Co spinel catalyst at low temperature. Applied Surface Science, 2019, 479, 548-556.	3.1	51
24	Effects of copper-precursors on the catalytic activity of Cu/graphene catalysts for the selective catalytic oxidation of ammonia. Applied Surface Science, 2017, 412, 37-44.	3.1	47
25	Simultaneous catalytic hydrolysis of carbonyl sulfide and carbon disulfide over Al2O3-K/CAC catalyst at low temperature. Journal of Energy Chemistry, 2014, 23, 221-226.	7.1	45
26	Interactive Effect for Simultaneous Removal of SO ₂ , NO, and CO ₂ in Flue Gas on Ion Exchanged Zeolites. Industrial & Engineering Chemistry Research, 2013, 52, 6778-6784.	1.8	42
27	Enhancement effects of ultrasound assisted in the synthesis of NiAl hydrotalcite for carbonyl sulfide removal. Ultrasonics Sonochemistry, 2016, 32, 336-342.	3.8	41
28	Promotion of low temperature oxidation of toluene vapor derived from the combination of microwave radiation and nano-size Co3O4. Chemical Engineering Journal, 2018, 333, 554-563.	6.6	39
29	The poisoning and regeneration effect of alkali metals deposed over commercial V2O5-WO3/TiO2 catalysts on SCR of NO by NH3. Science Bulletin, 2014, 59, 3966-3972.	1.7	36
30	Removal of volatile odorous organic compounds over NiAl mixed oxides at low temperature. Journal of Hazardous Materials, 2018, 344, 797-810.	6.5	34
31	Improving simultaneous removal efficiency of SO2 and NOx from flue gas by surface modification of MgO with organic component. Journal of Cleaner Production, 2019, 230, 508-517.	4.6	34
32	Application of AERMOD on near future air quality simulation under the latest national emission control policy of China: A case study on an industrial city. Journal of Environmental Sciences, 2013, 25, 1608-1617.	3.2	33
33	Isolated single-atom Pt sites for highly selective electrocatalytic hydrogenation of formaldehyde to methanol. Journal of Materials Chemistry A, 2020, 8, 8913-8919.	5.2	33
34	Structural control for inhibiting SO2 adsorption in porous MnCe nanowire aerogel catalysts for low-temperature NH3-SCR. Chemical Engineering Journal, 2022, 434, 134729.	6.6	33
35	Energy Utilization of Yellow Phosphorus Tail Gas: Simultaneous Catalytic Hydrolysis of Carbonyl Sulfide and Carbon Disulfide at Low Temperature. Energy Technology, 2015, 3, 136-144.	1.8	32
36	Study of reaction mechanism based on further promotion of low temperature degradation of toluene using nano-CeO2/Co3O4 under microwave radiation for cleaner production in spraying processing. Journal of Hazardous Materials, 2019, 373, 321-334.	6.5	31

#	Article	IF	CITATIONS
37	Novel Mn–Ce bi-oxides loaded on 3D monolithic nickel foam for low-temperature NH3-SCR de-NO : Preparation optimization and reaction mechanism. Journal of Rare Earths, 2022, 40, 268-278.	2.5	30
38	Mn2NiO4 spinel catalyst for high-efficiency selective catalytic reduction of nitrogen oxides with good resistance to H2O and SO2 at low temperature. Journal of Environmental Sciences, 2020, 89, 145-155.	3.2	28
39	Recent advances in selective catalytic oxidation of nitric oxide (NO-SCO) in emissions with excess oxygen: a review on catalysts and mechanisms. Environmental Science and Pollution Research, 2021, 28, 2549-2571.	2.7	28
40	Studies on the Dual-Templating Function of TBA for the Formation of ZSM-11 Intergrowth Morphology. Industrial & Engineering Chemistry Research, 2015, 54, 2120-2128.	1.8	26
41	Spinel-structured Mn–Ni nanosheets for NH ₃ -SCR of NO with good H ₂ O and SO ₂ resistance at low temperature. Catalysis Science and Technology, 2020, 10, 7486-7501.	2.1	26
42	Preparation and Phosphine Adsorption of Activated Carbon Prepared from Walnut Shells by KOH Chemical Activation. Separation Science and Technology, 2014, 49, 2366-2375.	1.3	25
43	Nitrogen Fixation and NO Conversion using Dielectric Barrier Discharge Reactor: Identification and Evolution of Products. Plasma Chemistry and Plasma Processing, 2018, 38, 485-501.	1.1	25
44	Performance and Pathways of Toluene Degradation over Co/13X by Different Processes Based on Nonthermal Plasma. Energy & Fuels, 2017, 31, 11217-11224.	2.5	23
45	Simultaneous Removal of SO2, NO, and CO2 on Metal-Modified Coconut Shell Activated Carbon. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	22
46	Adsorption behavior of chloroform, carbon disulfide, and acetone on coconut shell-derived carbon: experimental investigation, simulation, and model study. Environmental Science and Pollution Research, 2018, 25, 31219-31229.	2.7	22
47	Removal of toluene from industrial gas over 13X zeolite supported catalysts by adsorptionâ€plasma catalytic process. Journal of Chemical Technology and Biotechnology, 2017, 92, 2276-2286.	1.6	21
48	Novel synthesis of Pd-CeMnO3 perovskite based on unique ultrasonic intervention from combination of Sol-Gel and impregnation method for low temperature efficient oxidation of benzene vapour. Ultrasonics Sonochemistry, 2018, 48, 418-423.	3.8	21
49	Acid modification enhances selective catalytic reduction activity and sulfur dioxide resistance of manganese-cerium-cobalt catalysts: Insight into the role of phosphotungstic acid. Journal of Colloid and Interface Science, 2021, 603, 291-306.	5.0	21
50	An Efficient Two-Step Method for NH ₃ Removal at Low Temperature Using CoO _{<i>x</i>} -CuO _{<i>x</i>} /TiO ₂ as SCO Catalyst Followed by NiMn ₂ O ₄ as SCR Catalyst. Energy & Fuels, 2017, 31, 8580-8593.	2.5	20
51	N ₂ O Formation Characteristics in Dielectric Barrier Discharge Reactor for Environmental Application: Effect of Operating Parameters. Energy & Fuels, 2017, 31, 13901-13908.	2.5	20
52	NiO-Modified Coconut Shell Based Activated Carbon Pretreated with KOH for the High-Efficiency Adsorption of NO at Ambient Temperature. Industrial & Engineering Chemistry Research, 2018, 57, 16593-16603.	1.8	20
53	Reducing the competitive adsorption between SO2 and NO by Al2O3@TiO2 core-shell structure adsorbent. Chemical Engineering Journal, 2019, 364, 420-427.	6.6	20
54	Fe-modified Ce-MnOx/ACFN catalysts for selective catalytic reduction of NOx by NH3 at low-middle temperature. Environmental Science and Pollution Research, 2019, 26, 27940-27952.	2.7	19

#	Article	IF	CITATIONS
55	Co- or Ni-modified Sn-MnOx low-dimensional multi-oxides for high-efficient NH3-SCR De-NOx: Performance optimization and reaction mechanism. Journal of Environmental Sciences, 2022, 113, 204-218.	3.2	19
56	NOx Removal over Modified Carbon Molecular Sieve Catalysts Using a Combined Adsorption-Discharge Plasma Catalytic Process. Industrial & Engineering Chemistry Research, 2015, 54, 9097-9103.	1.8	17
57	Characterization of Metal Oxide-modified Walnut-shell Activated Carbon and Its Application for Phosphine Adsorption: Equilibrium, Regeneration, and Mechanism Studies. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 487-495.	0.4	17
58	Simultaneous removal of gaseous CO and elemental mercury over Cu-Co modified activated coke at low temperature. Journal of Environmental Sciences, 2021, 101, 36-48.	3.2	17
59	Study on mechanism of low-temperature oxidation of n-hexanal catalysed by 2D ultrathin Co3O4 nanosheets. Nano Research, 2022, 15, 1660-1671.	5.8	17
60	Inhibition of CO in Blast Furnace Flue Gas on Poisoning and Deactivation of a Ni/Activated Carbon Catalyst in COS Hydrolysis. Industrial & Engineering Chemistry Research, 2021, 60, 18183-18193.	1.8	17
61	NO removal in the process of adsorption non-thermal plasma catalytic decomposition. RSC Advances, 2014, 4, 8502.	1.7	16
62	Selective catalytic reduction of NOx with NH3 on Mn, Co-BTC-derived catalysts: Influence of thermal treatment temperature. Journal of Solid State Chemistry, 2022, 307, 122843.	1.4	16
63	Adsorptive removal of carbonyl sulfide by Fe-modified activated carbon: experiments and DFT calculations. Adsorption, 2017, 23, 1013-1022.	1.4	15
64	Removal of Toluene from Industrial Gas by Adsorption–Plasma Catalytic Process: Comparison of Closed Discharge and Ventilated Discharge. Plasma Chemistry and Plasma Processing, 2018, 38, 331-345.	1.1	15
65	Novel synthesis of MeOx (Ni, Cu, La)@Nano-Co3O4 from combination of complexation and impregnation in ultrasonic intervention for low temperature oxidation of toluene under microwave radiation. Ultrasonics Sonochemistry, 2018, 40, 543-551.	3.8	15
66	Simultaneous Adsorption of SO ₂ , NO, and CO ₂ by K ₂ CO ₃ â€Modified γâ€Alumina. Chemical Engineering and Technology, 2014, 37, 1049-1054.	0.9	14
67	The byproduct generation analysis of the NO _x conversion process in dielectric barrier discharge plasma. RSC Advances, 2016, 6, 63946-63953.	1.7	14
68	Facile fabrication of nanosheet-assembled MnCoOx hollow flower-like microspheres as highly effective catalysts for the low-temperature selective catalytic reduction of NOx by NH3. Environmental Science and Pollution Research, 2019, 26, 35846-35859.	2.7	14
69	Selective catalytic reduction of NO x with NH 3 over ironâ€cerium mixed oxide catalyst prepared by different methods. Journal of Chemical Technology and Biotechnology, 2020, 95, 232-245.	1.6	13
70	Nitric oxide decomposition using atmospheric pressure dielectric barrier discharge reactor with different adsorbents. RSC Advances, 2014, 4, 58417-58425.	1.7	12
71	Adsorption Separation of CO ₂ /CH ₄ Gas Mixture on Carbon Molecular Sieves Modified by Potassium Carbonate. Journal of Chemical & Engineering Data, 2016, 61, 2197-2201.	1.0	12
72	Improving the Efficiency of Mn-CeO _{<i>x</i>} /Cordierite Catalysts for Nonmethane Hydrocarbon Oxidation in Cooking Oil Fumes. Industrial & Engineering Chemistry Research, 2018, 57, 4186-4194.	1.8	12

#	Article	IF	CITATIONS
73	Study of the properties of adsorption of SO ₂ –Âthermal regeneration cycle of activated coke modified by oxidization. Journal of Chemical Technology and Biotechnology, 2018, 93, 720-729.	1.6	12
74	Study on active cokeâ€based adsorbents for <scp>SO₂</scp> removal in flue gas. Journal of Chemical Technology and Biotechnology, 2015, 90, 1876-1885.	1.6	11
75	Products Yield and Energy Efficiency of Dielectric Barrier Discharge for NO Conversion: Effect of O2 Content, NO Concentration, and Flow Rate. Energy & Fuels, 2017, 31, 9675-9683.	2.5	11
76	One-step synthesis, characterization and catalytic performance of hierarchical Zn-ZSM-11 via facile ZnO routes. RSC Advances, 2015, 5, 8152-8162.	1.7	10
77	Novel Niâ€Mn Biâ€oxides Doped Active Coke Catalysts for NH 3 â€SCR Deâ€NOx at Low Temperature. ChemistrySelect, 2020, 5, 6494-6503.	0.7	10
78	Mnâ€Feâ€Ce Coating onto Cordierite Monoliths as Structured Catalysts for NO Catalytic Oxidation. ChemistrySelect, 2019, 4, 4664-4671.	0.7	9
79	Efficient catalytic oxidation of methyl mercaptan to sulfur dioxide with NiCuFe mixed metal oxides. Environmental Technology and Innovation, 2022, 26, 102252.	3.0	9
80	Effects of Preparation Conditions on the Performance of Simultaneous Desulfurization and Denitrification over Ni/Fe Hydrotalcite-like Compounds. Energy & Fuels, 2016, 30, 2295-2301.	2.5	8
81	Studies on the calcium poisoning and regeneration of commercial De-NO x SCR catalyst. Chemical Papers, 2017, 71, 1921-1928.	1.0	8
82	Mn-CeOx/MeOx(Ti, Al)/cordierite preparation with ultrasound-assisted for non-methane hydrocarbon removal from cooking oil fumes. Ultrasonics Sonochemistry, 2019, 53, 126-133.	3.8	8
83	Cordierite-supported metal oxide for non-methane hydrocarbon oxidation in cooking oil fumes. Environmental Technology (United Kingdom), 2019, 40, 3358-3363.	1.2	8
84	Enhancement strategies for SCR activity, H2O & SO2 resistances and N2 selectivity on upgraded HMoP/Co/MnCeOx/NF catalysts. Journal of Environmental Chemical Engineering, 2021, 9, 106190.	3.3	7
85	Trends in air pollutant emissions from the sintering process of the iron and steel industry in the Fenwei Plain and surrounding regions in China, 2014–2017. Chemosphere, 2022, 291, 132917.	4.2	7
86	Study on coadsorption of SO ₂ , NO, and CO ₂ over copperâ€supported activated carbon sorbent in different operating conditions. Environmental Progress and Sustainable Energy, 2015, 34, 1044-1049.	1.3	6
87	Effects of seeding on the fast crystallization of ZSM-11 microspheres with intergrowth morphology and small particle size. Journal of Porous Materials, 2016, 23, 273-284.	1.3	6
88	Promotional Effects of Transition Metal Modification over Al ₂ O ₃ for CH ₃ SH Catalytic Oxidation. ChemistrySelect, 2019, 4, 9901-9907.	0.7	6
89	The optimization of hydrothermal synthesis of Mn x Co 3â€x O 4 / GC catalyst for low temperature NH 3 CR /using design of experiments. Journal of Chemical Technology and Biotechnology, 2021, 96, 2965-2975.	1.6	6
90	Environmental Risk Assessment System for Phosphogypsum Tailing Dams. Scientific World Journal, The, 2013, 2013, 1-13.	0.8	5

#	Article	IF	CITATIONS
91	Nonâ€thermal plasmaâ€assisted catalytic oxidation of NO in a dielectric barrier discharge reactor packed with MO _x /Al ₂ O ₃ (M = Mn or Co) as catalysts. Journal of Chemical Technology and Biotechnology, 2019, 94, 3180-3189.	1.6	5
92	Promoting Simultaneous Desulfurization and Denitrification Performance of Al ₂ O ₃ @TiO ₂ Core–Shell Structure Adsorbents by Enhancing Oxidation Performance: Modification by Rare Earth Elements (La, Ce, and Y), Reaction Temperature, and Oxygen Concentration. Industrial & Engineering Chemistry Research, 2019, 58, 5423-5431.	1.8	5
93	One-step synthesis by redox co-precipitation method for low-dimensional Me-Mn bi-metal oxides (Me=Co, Ni, Sn) as SCR DeNOx catalysts. Environmental Science and Pollution Research, 2022, 29, 21210-21220.	2.7	5
94	Manganese oxides supported on ACF N by a oneâ€step redox method for the lowâ€ŧemperature NOx reduction with NH 3 : effect of acid addition. Journal of Chemical Technology and Biotechnology, 2020, 95, 1380-1391.	1.6	4
95	Comparison of Selective Catalytic Reduction Performance of Mn–Co Biâ€Metal Oxides Prepared by Different Methods. ChemistrySelect, 2020, 5, 9409-9416.	0.7	4
96	Catalysts Optimization of WO ₃ â€SiO ₂ Supported Iridium for NOx Reduction by CO under Excess Oxygen Conditions. ChemistrySelect, 2022, 7, .	0.7	4
97	Removal of NO Using a Dielectric Barrier Discharge Reactor in a Cycled Adsorption–Desorption and Decomposition System. Arabian Journal for Science and Engineering, 2017, 42, 1463-1474.	1.7	3
98	Influence mechanism of different precursors on the adsorption behavior of NOx over Cu ²⁺ ionâ€exchange ZSMâ€5. Journal of Chemical Technology and Biotechnology, 2019, 94, 3356-3366.	1.6	3
99	A novel semiâ€dry method for the simultaneous removal of Hg and SO 2 using spray drying absorption method. Journal of Chemical Technology and Biotechnology, 2020, 95, 1431-1440.	1.6	3
100	Ultrasoundâ€assisted modification of Al 2 O 3 @ TiO 2 â€Ce coreâ€shell structure adsorbent for simultaneous desulfurization and denitrification. Journal of Chemical Technology and Biotechnology, 2020, 95, 2261-2271.	1.6	3
101	Application of MCM-48 with large specific surface area for VOCs elimination: synthesis and hydrophobic functionalization for highly efficient adsorption. Environmental Science and Pollution Research, 2022, 29, 33595-33608.	2.7	3
102	Catalytic Oxidation of Nitric Oxide over Mn–Fe Metal Oxides Catalysts. Journal of Chemical Engineering of Japan, 2014, 47, 671-677.	0.3	2
103	Study on the Behavior of Divalent Metal Ion in the Crystallization of Hierarchical ZSM-11. Chemistry Letters, 2018, 47, 1158-1161.	0.7	2
104	Byproducts Generation Characteristics of Non-thermal Plasma for NO Conversion: Effect of Reaction Conditions. Plasma Chemistry and Plasma Processing, 2021, 41, 369-387.	1.1	2
105	Mn – Co binary oxides for lowâ€ŧemperature catalytic oxidation of NO : effect of SO 2 and regeneration. Journal of Chemical Technology and Biotechnology, 2021, 96, 2956-2964.	1.6	2
106	Fix of Zn species in silicaliteâ€⊋ via a facile crystallisation process control route. Micro and Nano Letters, 2020, 15, 451-454.	0.6	0