
MarÃ-a Cruz MinguillÃ³n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5011797/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Science of the Total Environment, 2020, 726, 138540.	8.0	610
2	Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmospheric Environment, 2007, 41, 7219-7231.	4.1	396
3	Spatial and temporal variations in airborne particulate matter (PM10 and PM2.5) across Spain 1999–2005. Atmospheric Environment, 2008, 42, 3964-3979.	4.1	287
4	AIRUSE-LIFE+: a harmonized PM speciation and source apportionment in fiveÂsouthern European cities. Atmospheric Chemistry and Physics, 2016, 16, 3289-3309.	4.9	267
5	Assessment of air quality microsensors versus reference methods: The EuNetAir joint exercise. Atmospheric Environment, 2016, 147, 246-263.	4.1	182
6	Variations in vanadium, nickel and lanthanoid element concentrations in urban air. Science of the Total Environment, 2010, 408, 4569-4579.	8.0	163
7	Recreational atmospheric pollution episodes: Inhalable metalliferous particles from firework displays. Atmospheric Environment, 2007, 41, 913-922.	4.1	158
8	Fossil versus contemporary sources of fine elemental and organic carbonaceous particulate matter during the DAURE campaign in Northeast Spain. Atmospheric Chemistry and Physics, 2011, 11, 12067-12084.	4.9	157
9	Subway platform air quality: Assessing the influences of tunnel ventilation, train piston effect and station design. Atmospheric Environment, 2014, 92, 461-468.	4.1	141
10	Exposure to airborne particulate matter in the subway system. Science of the Total Environment, 2015, 511, 711-722.	8.0	140
11	Factors controlling air quality in different European subway systems. Environmental Research, 2016, 146, 35-46.	7.5	138
12	Urban air quality comparison for bus, tram, subway and pedestrian commutes in Barcelona. Environmental Research, 2015, 142, 495-510.	7.5	136
13	Inter-comparison of receptor models for PM source apportionment: Case study in an industrial area. Atmospheric Environment, 2008, 42, 3820-3832.	4.1	134
14	2001–2012 trends on air quality in Spain. Science of the Total Environment, 2014, 490, 957-969.	8.0	123
15	On the isolation of OC and EC and the optimal strategy of radiocarbon-based source apportionment of carbonaceous aerosols. Atmospheric Chemistry and Physics, 2012, 12, 10841-10856.	4.9	122
16	ACTRIS ACSM intercomparison – Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers. Atmospheric Measurement Techniques, 2015, 8, 2555-2576.	3.1	118
17	A new look at inhalable metalliferous airborne particles on rail subway platforms. Science of the Total Environment, 2015, 505, 367-375.	8.0	116
18	Variability of carbonaceous aerosols in remote, rural, urban and industrial environments in Spain: implications for air quality policy. Atmospheric Chemistry and Physics, 2013, 13, 6185-6206.	4.9	104

#	Article	IF	CITATIONS
19	ACTRIS ACSM intercomparison – Part 1: Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with co-located instruments. Atmospheric Measurement Techniques, 2015, 8, 5063-5087.	3.1	104
20	Fine and coarse PM composition and sources in rural and urban sites in Switzerland: Local or regional pollution?. Science of the Total Environment, 2012, 427-428, 191-202.	8.0	103
21	Origin of inorganic and organic components of PM 2.5 in subway stations of Barcelona, Spain. Environmental Pollution, 2016, 208, 125-136.	7.5	95
22	Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland. Atmospheric Chemistry and Physics, 2011, 11, 8945-8963.	4.9	90
23	Lanthanoid Geochemistry of Urban Atmospheric Particulate Matter. Environmental Science & Technology, 2008, 42, 6502-6507.	10.0	84
24	Seasonal and spatial variations of sources of fine and quasi-ultrafine particulate matter in neighborhoods near the Los Angeles–Long Beach harbor. Atmospheric Environment, 2008, 42, 7317-7328.	4.1	82
25	Long-term real-time chemical characterization of submicron aerosols at Montsec (southern Pyrenees,) Tj ETQq1 J	0,784314 4.9	4 rgBT /Overl
26	Elemental composition of ambient aerosols measured with high temporal resolution using an online XRF spectrometer. Atmospheric Measurement Techniques, 2017, 10, 2061-2076.	3.1	79
27	Organic aerosol source apportionment by offline-AMS over a full year in Marseille. Atmospheric Chemistry and Physics, 2017, 17, 8247-8268.	4.9	75
28	Organic compound characterization and source apportionment of indoor and outdoor quasi-ultrafine particulate matter in retirement homes of the Los Angeles Basin. Indoor Air, 2010, 20, 17-30.	4.3	73
29	Application of Optimally Scaled Target Factor Analysis for Assessing Source Contribution of Ambient PM ₁₀ . Journal of the Air and Waste Management Association, 2009, 59, 1296-1307.	1.9	72
30	Assessment of air quality microsensors versus reference methods: The EuNetAir Joint Exercise – Part II. Atmospheric Environment, 2018, 193, 127-142.	4.1	72
31	Chemical characterization of submicron regional background aerosols in the western Mediterranean using an Aerosol Chemical Speciation Monitor. Atmospheric Chemistry and Physics, 2015, 15, 6379-6391.	4.9	69
32	Source apportionment of indoor, outdoor and personal PM2.5 exposure of pregnant women in Barcelona, Spain. Atmospheric Environment, 2012, 59, 426-436.	4.1	68
33	Oxidative potential of subway PM 2.5. Atmospheric Environment, 2017, 148, 230-238.	4.1	63
34	Deposition of aerosol particles from a subway microenvironment in the human respiratory tract. Journal of Aerosol Science, 2015, 90, 103-113.	3.8	62
35	Spatial variability of trace elements and sources for improved exposure assessment in Barcelona. Atmospheric Environment, 2014, 89, 268-281.	4.1	61
36	Organic compounds in aerosols from selected European sites – Biogenic versus anthropogenic sources. Atmospheric Environment, 2012, 59, 243-255.	4.1	57

#	Article	IF	CITATIONS
37	Detection of Saharan dust and biomass burning events using near-real-time intensive aerosol optical properties in the north-western Mediterranean. Atmospheric Chemistry and Physics, 2016, 16, 12567-12586.	4.9	54
38	Effects of sources and meteorology on particulate matter in the Western Mediterranean Basin: An overview of the DAURE campaign. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4978-5010.	3.3	49
39	The effect of ventilation protocols on airborne particulate matter in subway systems. Science of the Total Environment, 2017, 584-585, 1317-1323.	8.0	49
40	Particulate air pollution and preeclampsia: a source-based analysis. Occupational and Environmental Medicine, 2014, 71, 570-577.	2.8	46
41	Variability of aerosols and chemical composition of PM 10 , PM 2.5 and PM 1 on a platform of the Prague underground metro. Atmospheric Environment, 2015, 118, 176-183.	4.1	46
42	Bioaerosols in the Barcelona subway system. Indoor Air, 2017, 27, 564-575.	4.3	45
43	Phenomenology of high-ozone episodes in NE Spain. Atmospheric Chemistry and Physics, 2017, 17, 2817-2838.	4.9	45
44	Aerosol sources in subway environments. Environmental Research, 2018, 167, 314-328.	7.5	45
45	Effect of ceramic industrial particulate emission control on key components of ambient PM10. Journal of Environmental Management, 2009, 90, 2558-2567.	7.8	44
46	Impact of fugitive emissions in ambient PM levels and compositionA case study in Southeast Spain. Science of the Total Environment, 2010, 408, 4999-5009.	8.0	44
47	PM10 speciation and determination of air quality target levels. A case study in a highly industrialized area of Spain. Science of the Total Environment, 2007, 372, 382-396.	8.0	43
48	European aerosol phenomenology â^ 8: Harmonised source apportionment of organic aerosol using 22 Year-long ACSM/AMS datasets. Environment International, 2022, 166, 107325.	10.0	41
49	Three years of aerosol mass, black carbon and particle number concentrations at Montsec (southern) Tj ETQq1 1	0.784314 4.9	rgBT /Overlo
50	Secondary organic aerosol origin in an urban environment: influence of biogenic and fuel combustion precursors. Faraday Discussions, 2016, 189, 337-359.	3.2	40
51	Impact of the implementation of PM abatement technology on the ambient air levels of metals in a highly industrialised area. Atmospheric Environment, 2007, 41, 1026-1040.	4.1	38
52	New particle formation at ground level and in the vertical column over the Barcelona area. Atmospheric Research, 2015, 164-165, 118-130.	4.1	37
53	Source apportionment of highly time-resolved elements during a firework episode from a rural freeway site in Switzerland. Atmospheric Chemistry and Physics, 2020, 20, 1657-1674.	4.9	37
54	Quantitative sampling and analysis of trace elements in atmospheric aerosols: impactor characterization and Synchrotron-XRF mass calibration. Atmospheric Measurement Techniques, 2010, 3, 1473-1485.	3.1	36

#	Article	IF	CITATIONS
55	Joint analysis of continental and regional background environments in the western Mediterranean: PM ₁ and PM ₁₀ concentrations and composition. Atmospheric Chemistry and Physics, 2015, 15, 1129-1145.	4.9	36
56	Effects of two different biogenic emission models on modelled ozone and aerosol concentrations in Europe. Atmospheric Chemistry and Physics, 2019, 19, 3747-3768.	4.9	36
57	Sources of organic aerosols in Europe: a modeling study using CAMx with modified volatility basis set scheme. Atmospheric Chemistry and Physics, 2019, 19, 15247-15270.	4.9	35
58	Receptor models application to multi-year ambient PM10 measurements in an industrialized ceramic area: Comparison of source apportionment results. Atmospheric Environment, 2008, 42, 9007-9017.	4.1	34
59	Mass concentration, composition and sources of fine and coarse particulate matter in Tijuana, Mexico, during Cal-Mex campaign. Atmospheric Environment, 2014, 88, 320-329.	4.1	32
60	Factors controlling particle number concentration and size at metro stations. Atmospheric Environment, 2017, 156, 169-181.	4.1	29
61	PM sources in a highly industrialised area in the process of implementing PM abatement technology. Quantification and evolution. Journal of Environmental Monitoring, 2007, 9, 1071.	2.1	28
62	Presenting SAPUSS: Solving Aerosol Problem by Using Synergistic Strategies in Barcelona, Spain. Atmospheric Chemistry and Physics, 2013, 13, 8991-9019.	4.9	27
63	Molecular insights into new particle formation in Barcelona, Spain. Atmospheric Chemistry and Physics, 2020, 20, 10029-10045.	4.9	27
64	Quantifying traffic, biomass burning and secondary source contributions to atmospheric particle number concentrations at urban and suburban sites. Science of the Total Environment, 2021, 768, 145282.	8.0	26
65	Increase in secondary organic aerosol in an urban environment. Atmospheric Chemistry and Physics, 2021, 21, 8323-8339.	4.9	25
66	A European aerosol phenomenology - 7: High-time resolution chemical characteristics of submicron particulate matter across Europe. Atmospheric Environment: X, 2021, 10, 100108.	1.4	23
67	Spatial and temporal variations in inhalable CuZnPb aerosols within the Mexico City pollution plume. Journal of Environmental Monitoring, 2008, 10, 370.	2.1	22
68	Health risk assessment from exposure to particles during packing in working environments. Science of the Total Environment, 2019, 671, 474-487.	8.0	22
69	Evaluation of the Semi-Continuous OCEC analyzer performance with the EUSAAR2 protocol. Science of the Total Environment, 2020, 747, 141266.	8.0	22
70	Intercomparison and characterization of 23 Aethalometers under laboratory and ambient air conditions: procedures and unit-to-unit variabilities. Atmospheric Measurement Techniques, 2021, 14, 3195-3216.	3.1	22
71	Air quality comparison between two European ceramic tile clusters. Atmospheric Environment, 2013, 74, 311-319.	4.1	21
72	Development of a versatile source apportionment analysis based on positive matrix factorization: a case study of the seasonal variation of organic aerosol sources in Estonia. Atmospheric Chemistry and Physics 2019, 19, 7279-7295	4.9	19

#	Article	IF	CITATIONS
73	Organophosphate esters in airborne particles from subway stations. Science of the Total Environment, 2021, 769, 145105.	8.0	19
74	Vertical and horizontal fall-off of black carbon and NO2 within urban blocks. Science of the Total Environment, 2019, 686, 236-245.	8.0	18
75	Compositional changes of PM2.5 in NE Spain during 2009–2018: A trend analysis of the chemical composition and source apportionment. Science of the Total Environment, 2021, 795, 148728.	8.0	18
76	How can ventilation be improved on public transportation buses? Insights from CO2 measurements. Environmental Research, 2022, 205, 112451.	7.5	17
77	Inter- and Intra-Community Variability in Continuous Coarse Particulate Matter (PM _{10-2.5}) Concentrations in the Los Angeles Area. Aerosol Science and Technology, 2010, 44, 526-540.	3.1	16
78	Within-city contrasts in PM composition and sources and their relationship with nitrogen oxides. Journal of Environmental Monitoring, 2012, 14, 2718.	2.1	15
79	Source apportionment of urban PM1 in Barcelona during SAPUSS using organic and inorganic components. Environmental Science and Pollution Research, 2019, 26, 32114-32127.	5.3	15
80	Formation and alteration of airborne particles in the subway environment. Environmental Sciences: Processes and Impacts, 2017, 19, 59-64.	3.5	14
81	Vertical and horizontal variability of PM ₁₀ source contributions in Barcelona during SAPUSS. Atmospheric Chemistry and Physics, 2016, 16, 6785-6804.	4.9	10
82	Absorption enhancement of black carbon particles in a Mediterranean city and countryside: effect of particulate matter chemistry, ageing and trend analysis. Atmospheric Chemistry and Physics, 2022, 22, 8439-8456.	4.9	10
83	Road traffic and sandy playground influence on ambient pollutants in schools. Atmospheric Environment, 2015, 111, 94-102.	4.1	9
84	PM10 concentration in urban atmosphere around the eastern Tien Shan, Central Asia during 2007–2013. Environmental Science and Pollution Research, 2015, 22, 6864-6876.	5.3	7
85	Air Quality in Subway Systems. , 2018, , 289-321.		7
86	Origin of PM10 Pollution Episodes in an Industrialized Mega-City in Central China. Aerosol and Air Quality Research, 2014, 14, 338-346.	2.1	7
87	Particulate Matter: Environmental Monitoring and Mitigation. , 2013, , .		1
88	Urban case studies: general discussion. Faraday Discussions, 2016, 189, 473-514.	3.2	1
89	Characterisation of Airborne Particulate Matter in Different European Subway Systems. , 2017, , .		1