Jose F Garcia-Mazcorro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/501158/publications.pdf

Version: 2024-02-01

46 papers 1,603

430874 18 h-index 302126 39 g-index

56 all docs

56
docs citations

56 times ranked 2149 citing authors

#	Article	IF	CITATIONS
1	The Fecal Microbiome in Dogs with Acute Diarrhea and Idiopathic Inflammatory Bowel Disease. PLoS ONE, 2012, 7, e51907.	2.5	339
2	Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats. FEMS Microbiology Ecology, 2011, 76, 301-310.	2.7	324
3	Effect of a multi-species synbiotic formulation on fecal bacterial microbiota of healthy cats and dogs as evaluated by pyrosequencing. FEMS Microbiology Ecology, 2011, 78, 542-554.	2.7	116
4	Effect of the proton pump inhibitor omeprazole on the gastrointestinal bacterial microbiota of healthy dogs. FEMS Microbiology Ecology, 2012, 80, 624-636.	2.7	111
5	Abundance and shortâ€ŧerm temporal variability of fecal microbiota in healthy dogs. MicrobiologyOpen, 2012, 1, 340-347.	3.0	84
6	Characterization of fecal microbiota in cats using universal 16S rRNA gene and group-specific primers for Lactobacillus and Bifidobacterium spp Veterinary Microbiology, 2010, 144, 140-146.	1.9	74
7	Molecular assessment of the fecal microbiota in healthy cats and dogs before and during supplementation with fructo-oligosaccharides (FOS) and inulin using high-throughput 454-pyrosequencing. Peerl, 2017, 5, e3184.	2.0	42
8	Carbohydrate-Free Peach (Prunus persica) and Plum (Prunus domestica) Juice Affects Fecal Microbial Ecology in an Obese Animal Model. PLoS ONE, 2014, 9, e101723.	2.5	40
9	Randomized clinical trial to evaluate the effect of fecal microbiota transplant for initial Clostridium difficile infection in intestinal microbiome. PLoS ONE, 2017, 12, e0189768.	2.5	39
10	First Insights into the Gut Microbiota of Mexican Patients with Celiac Disease and Non-Celiac Gluten Sensitivity. Nutrients, 2018, 10, 1641.	4.1	39
11	Effect of dark sweet cherry powder consumption on the gut microbiota, short-chain fatty acids, and biomarkers of gut health in obese db/db mice. PeerJ, 2018, 6, e4195.	2.0	39
12	Characterization and safety of uniform particle size NovaSil clay as a potential aflatoxin enterosorbent. Applied Clay Science, 2011, 54, 248-257.	5.2	36
13	Influence of whole-wheat consumption on fecal microbial community structure of obese diabetic mice. PeerJ, 2016, 4, e1702.	2.0	34
14	Comprehensive Molecular Characterization of Bacterial Communities in Feces of Pet Birds Using 16S Marker Sequencing. Microbial Ecology, 2017, 73, 224-235.	2.8	28
15	Effect of barley supplementation on the fecal microbiota, caecal biochemistry, and key biomarkers of obesity and inflammation in obese db/db mice. European Journal of Nutrition, 2018, 57, 2513-2528.	3.9	28
16	Molecular exploration of fecal microbiome in quinoa-supplemented obese mice. FEMS Microbiology Ecology, 2016, 92, fiw089.	2.7	25
17	The Effect of Gluten-Free Diet on Health and the Gut Microbiota Cannot Be Extrapolated from One Population to Others. Nutrients, 2018, 10, 1421.	4.1	24
18	Commentary on key aspects of fecal microbiota transplantation in small animal practice. Veterinary Medicine: Research and Reports, 2016, 7, 71.	0.6	22

#	Article	IF	Citations
19	Review: Are there indigenous Saccharomyces in the digestive tract of livestock animal species? Implications for health, nutrition and productivity traits. Animal, 2020, 14, 22-30.	3.3	17
20	Dietary Supplementation with Raspberry Extracts Modifies the Fecal Microbiota in Obese Diabetic db/db Mice. Journal of Microbiology and Biotechnology, 2018, 28, 1247-1259.	2.1	15
21	Apple consumption is associated with a distinctive microbiota, proteomics and metabolomics profile in the gut of Dawley Sprague rats fed a high-fat diet. PLoS ONE, 2019, 14, e0212586.	2.5	14
22	Nopal fiber (<i>Opuntia ficus</i> â€ <i>indica</i>) improves symptoms in irritable bowel syndrome in the short term: a randomized controlled trial. Neurogastroenterology and Motility, 2021, 33, e13986.	3.0	14
23	Akkermansia and Microbial Degradation of Mucus in Cats and Dogs: Implications to the Growing Worldwide Epidemic of Pet Obesity. Veterinary Sciences, 2020, 7, 44.	1.7	13
24	Gastrointestinal microorganisms in cats and dogs: a brief review. Archivos De Medicina Veterinaria, 2013, 45, 111-124.	0.2	12
25	Draft genome sequences of two opportunistic pathogenic strains of Staphylococcus cohnii isolated from human patients. Standards in Genomic Sciences, 2017, 12, 49.	1.5	11
26	Descriptive Bacterial and Fungal Characterization of Propolis Using Ultra-High-Throughput Marker Gene Sequencing. Insects, 2019, 10, 402.	2.2	10
27	Different analysis strategies of 16S rRNA gene data from rodent studies generate contrasting views of gut bacterial communities associated with diet, health and obesity. PeerJ, 2020, 8, e10372.	2.0	8
28	Prediction of functional metagenomic composition using archived 16S rDNA sequence data from the gut microbiota of livestock. Livestock Science, 2018, 213, 28-34.	1.6	6
29	Thinking beside the box: Should we care about the non-coding strand of the 16S rRNA gene?. FEMS Microbiology Letters, 2016, 363, fnw171.	1.8	5
30	Testing evolutionary models to explain the process of nucleotide substitution in gut bacterial 16S rRNA gene sequences. FEMS Microbiology Letters, 2013, 346, 97-104.	1.8	4
31	The health enhancer yeast <i>Saccharomyces cerevisiae</i> in two types of commercial products for animal nutrition. Letters in Applied Microbiology, 2019, 68, 472-478.	2.2	4
32	Effects of Neutral Electrolysed Water on tomato seeds artificially contaminated with Fusarium and Aspergillus. Seed Science and Technology, 2019, 47, 211-227.	1.4	3
33	Composition and Potential Function of Fecal Bacterial Microbiota from Six Bird Species. Birds, 2021, 2, 42-59.	1.4	3
34	Aflatoxin B1 Sorption and Safety of Dietary Sodium Bentonite in Sprague-Dawley Rats. Clays and Clay Minerals, 2022, 70, 165-181.	1.3	3
35	Effects of Rumen-Protected Choline on Growth Performance, Carcass Characteristics and Blood Lipid Metabolites of Feedlot Lambs. Animals, 2020, 10, 1580.	2.3	2
36	Evaluation of aflatoxin and fumonisin co-exposure in urine samples from healthy volunteers in northern Mexico. Toxicology Reports, 2021, 8, 1734-1741.	3.3	2

#	Article	IF	CITATIONS
37	Annual acknowledgement of manuscript reviewers. BMC Research Notes, 2013, 6, .	1.4	1
38	Fibre from nopal cactus (Opuntia ficus-indica) improves symptoms in irritable bowel syndrome in the short term: a pilot randomised-controlled trial. Proceedings of the Nutrition Society, 2020, 79, .	1.0	1
39	Fecal bacterial microbiota in constipated patients before and after eight weeks of daily Bifidobacterium infantis 35624 administration. Revista De GastroenterologÃa De México (English) Tj ETQq1 1	0. 784 314	rgBT /Overlo
40	Reviewer acknowledgement 2012. BMC Microbiology, 2013, 13, 21.	3.3	0
41	Gastrointestinal microbiota and irritable bowel syndrome. Revista De GastroenterologÃa De México (English Edition), 2014, 79, 214-215.	0.2	0
42	<i><scp>JVIM</scp></i> Manuscript Reviewers in 2013. Journal of Veterinary Internal Medicine, 2014, 28, 1135-1138.	1.6	0
43	<i>JVIM</i> Manuscript Reviewers Who Critiqued in the 2014 Calender Year. Journal of Veterinary Internal Medicine, 2015, 29, 739-741.	1.6	0
44	BMC Microbiology reviewer acknowledgement 2015. BMC Microbiology, 2016, 16, .	3.3	0
45	Tu1631 - Nopal Fiber (Opuntia Ficus Indica) Improves Symptoms in Irritable Bowel Syndrome: Results from a 7 Day Randomizedcontrolled Trial. Gastroenterology, 2018, 154, S-975.	1.3	0
46	Sull62 - Duodenal and Fecal Microbiota before and after a Gluten-Free Diet (GFD) in Patients with Celiac Disease, Non-Celiac Gluten Sensitivity and Controls. Gastroenterology, 2018, 154, S-490.	1.3	0