
Thomas L Leto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5011376/publications.pdf Version: 2024-02-01

THOMAS LIFTO

#	Article	IF	CITATIONS
1	Interpretation of Dihydrorhodamine-1,2,3 Flow Cytometry in Chronic Granulomatous Disease: an Atypical Exemplar. Journal of Clinical Immunology, 2022, , 1.	3.8	Ο
2	A Novel RAC2 Variant Presenting as Severe Combined Immunodeficiency. Journal of Clinical Immunology, 2021, 41, 473-476.	3.8	9
3	Pan-Cancer Analysis Shows TP53 Mutations Modulate the Association of NOX4 with Genetic Programs of Cancer Progression and Clinical Outcome. Antioxidants, 2021, 10, 235.	5.1	9
4	Functional Characterization of DUOX Enzymes in Reconstituted Cell Models. Methods in Molecular Biology, 2019, 1982, 173-190.	0.9	3
5	Heterozygous activating mutation in RAC2 causes infantile-onset combined immunodeficiency with susceptibility to viral infections. Clinical Immunology, 2019, 205, 1-5.	3.2	27
6	Dominant activating RAC2 mutation with lymphopenia, immunodeficiency, and cytoskeletal defects. Blood, 2019, 133, 1977-1988.	1.4	61
7	Duox1 Regulates Primary B Cell Function under the Influence of IL-4 through BCR-Mediated Generation of Hydrogen Peroxide. Journal of Immunology, 2019, 202, 428-440.	0.8	8
8	Model Systems to Investigate NOX-Dependent Cell Migration and Invasiveness. Methods in Molecular Biology, 2019, 1982, 473-485.	0.9	2
9	Interaction between p22phox and Nox4 in the endoplasmic reticulum suggests a unique mechanism of NADPH oxidase complex formation. Free Radical Biology and Medicine, 2018, 116, 41-49.	2.9	28
10	Deficiency in Duox2 activity alleviates ileitis in GPx1- and GPx2-knockout mice without affecting apoptosis incidence in the crypt epithelium. Redox Biology, 2017, 11, 144-156.	9.0	34
11	Histone modifications affect differential regulation of TGFβ- induced NADPH oxidase 4 (NOX4) by wild-type and mutant p53. Oncotarget, 2017, 8, 44379-44397.	1.8	15
12	Peroxiredoxin 6 (Prdx6) supports NADPH oxidase1 (Nox1)-based superoxide generation and cell migration. Free Radical Biology and Medicine, 2016, 96, 99-115.	2.9	39
13	When an Intramolecular Disulfide Bridge Governs the Interaction of DUOX2 with Its Partner DUOXA2. Antioxidants and Redox Signaling, 2015, 23, 724-733.	5.4	29
14	The Extracellular A-loop of Dual Oxidases Affects the Specificity of Reactive Oxygen Species Release. Journal of Biological Chemistry, 2015, 290, 6495-6506.	3.4	34
15	NLRP3 inflammasome activation and interleukin-1β release in macrophages require calcium but are independent of calcium-activated NADPH oxidases. Inflammation Research, 2014, 63, 821-830.	4.0	43
16	Release of Cystic Fibrosis Airway Inflammatory Markers from <i>Pseudomonas aeruginosa</i> –Stimulated Human Neutrophils Involves NADPH Oxidase-Dependent Extracellular DNA Trap Formation. Journal of Immunology, 2014, 192, 4728-4738.	0.8	85
17	Hypothyroidism-associated missense mutation impairs NADPH oxidase activity and intracellular trafficking of Duox2. Free Radical Biology and Medicine, 2014, 73, 190-200.	2.9	19
18	Histamine Stimulates Hydrogen Peroxide Production by Bronchial Epithelial Cells via Histamine H1 Receptor and Duox. American Journal of Respiratory Cell and Molecular Biology, 2013, 50, 130820084605001.	2.9	34

THOMAS L LETO

#	Article	IF	CITATIONS
19	Pyocyanin effects on respiratory epithelium: relevance in Pseudomonas aeruginosa airway infections. Trends in Microbiology, 2013, 21, 73-81.	7.7	233
20	The Gdac1 locus modifies spontaneous and Salmonella-induced colitis in mice deficient in either Gpx2 or Gpx1 gene. Free Radical Biology and Medicine, 2013, 65, 1273-1283.	2.9	10
21	Pyocyanin-Enhanced Neutrophil Extracellular Trap Formation Requires the NADPH Oxidase. PLoS ONE, 2013, 8, e54205.	2.5	101
22	Nox4 involvement in TGF-beta and SMAD3-driven induction of the epithelial-to-mesenchymal transition and migration of breast epithelial cells. Free Radical Biology and Medicine, 2012, 53, 1489-1499.	2.9	181
23	Peroxiredoxin 6 translocates to the plasma membrane during neutrophil activation and is required for optimal NADPH oxidase activity. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 306-315.	4.1	53
24	Analysis of Candidate Colitis Genes in the Gdac1 Locus of Mice Deficient in Glutathione Peroxidase-1 and -2. PLoS ONE, 2012, 7, e44262.	2.5	13
25	Cooperation of p40 with p47 for Nox2-based NADPH Oxidase Activation during Fcl ³ Receptor (Fcl ³ R)-mediated Phagocytosis. Journal of Biological Chemistry, 2011, 286, 40693-40705.	3.4	37
26	Double-Stranded RNA Induces Shedding of the 34-kDa Soluble TNFR1 from Human Airway Epithelial Cells via TLR3–TRIF–RIP1-Dependent Signaling: Roles for Dual Oxidase 2- and Caspase-Dependent Pathways. Journal of Immunology, 2011, 186, 1180-1188.	0.8	41
27	Characterization of hydrogen peroxide production by Duox in bronchial epithelial cells exposed to <i>Pseudomonas aeruginosa</i> . FEBS Letters, 2010, 584, 917-922.	2.8	40
28	The Nonphagocytic NADPH Oxidase Duox1 Mediates a Positive Feedback Loop During T Cell Receptor Signaling. Science Signaling, 2010, 3, ra59.	3.6	111
29	Duox maturation factors form cell surface complexes with Duox affecting the specificity of reactive oxygen species generation. FASEB Journal, 2009, 23, 1205-1218.	0.5	149
30	Targeting and Regulation of Reactive Oxygen Species Generation by Nox Family NADPH Oxidases. Antioxidants and Redox Signaling, 2009, 11, 2607-2619.	5.4	298
31	Redox warfare between airway epithelial cells and Pseudomonas: dual oxidase versus pyocyanin. Immunologic Research, 2009, 43, 198-209.	2.9	38
32	Oxidative Innate Immune Defenses by Nox/Duox Family NADPH Oxidases. , 2008, 15, 164-187.		369
33	Radical Generation and Alterations of Erythrocyte Integrity as Bioindicators of Diagnostic or Prognostic Value in COPD?. Antioxidants and Redox Signaling, 2008, 10, 829-836.	5.4	16
34	Sequential Binding of Cytosolic Phox Complex to Phagosomes through Regulated Adaptor Proteins: Evaluation Using the Novel Monomeric Kusabira-Green System and Live Imaging of Phagocytosis. Journal of Immunology, 2008, 181, 629-640.	0.8	50
35	Mechanism of Angiotensin II-induced Superoxide Production in Cells Reconstituted with Angiotensin Type 1 Receptor and the Components of NADPH Oxidase. Journal of Biological Chemistry, 2008, 283, 255-267.	3.4	54
36	The <i>Pseudomonas</i> Toxin Pyocyanin Inhibits the Dual Oxidase-Based Antimicrobial System as It Imposes Oxidative Stress on Airway Epithelial Cells. Journal of Immunology, 2008, 181, 4883-4893.	0.8	106

THOMAS L LETO

#	Article	IF	CITATIONS
37	Novel sources of reactive oxygen species in the human body. Nephrology Dialysis Transplantation, 2007, 22, 1281-1288.	0.7	75
38	A Regulated Adaptor Function of p40phox: Distinct p67phoxMembrane Targeting by p40phoxand by p47phox. Molecular Biology of the Cell, 2007, 18, 441-454.	2.1	75
39	Subcellular localization and function of alternatively spliced Noxo1 isoforms. Free Radical Biology and Medicine, 2007, 42, 180-190.	2.9	42
40	Involvement of Rac1 in Activation of Multicomponent Nox1- and Nox3-Based NADPH Oxidases. Molecular and Cellular Biology, 2006, 26, 2160-2174.	2.3	211
41	Role of Nox Family NADPH Oxidases in Host Defense. Antioxidants and Redox Signaling, 2006, 8, 1549-1561.	5.4	215
42	Dual oxidases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 2301-2308.	4.0	123
43	The Nox Family of NAD(P)H Oxidases: Host Defense and Beyond. Journal of Biological Chemistry, 2004, 279, 51715-51718.	3.4	394
44	Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB Journal, 2003, 17, 1-14.	0.5	431
45	Proteins Homologous to p47 and p67 Support Superoxide Production by NAD(P)H Oxidase 1 in Colon Epithelial Cells. Journal of Biological Chemistry, 2003, 278, 20006-20012.	3.4	258
46	NAD(P)H Oxidase 1, a Product of Differentiated Colon Epithelial Cells, Can Partially Replace Glycoprotein 91 <i>phox</i> in the Regulated Production of Superoxide by Phagocytes. Journal of Immunology, 2003, 171, 299-306.	0.8	189
47	Genetic Demonstration of p47phox-Dependent Superoxide Anion Production in Murine Vascular Smooth Muscle Cells. Circulation, 2001, 104, 79-84.	1.6	142
48	Genetic requirement of p47phoxfor superoxide production by murine microglia. FASEB Journal, 2001, 15, 285-287.	0.5	59
49	Genetic, Biochemical, and Clinical Features of Chronic Granulomatous Disease. Medicine (United) Tj ETQq1 1 C).784314 rg 1.0	BT /Overlock 775
50	Essential Requirement of Cytosolic Phospholipase A2for Activation of the Phagocyte NADPH Oxidase. Journal of Biological Chemistry, 1998, 273, 441-445.	3.4	190