Hubert Hilbi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5011260/publications.pdf

Version: 2024-02-01

43973 60497 7,872 138 48 81 citations h-index g-index papers 155 155 155 5974 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Bacterial quorum sensing and phenotypic heterogeneity: how the collective shapes the individual. Trends in Microbiology, 2022, 30, 379-389.	3.5	27
2	The <i>Legionella</i> Lqs-LvbR Regulatory Network Controls Temperature-Dependent Growth Onset and Bacterial Cell Density. Applied and Environmental Microbiology, 2022, 88, aem0237021.	1.4	7
3	Microbe Profile: Legionella pneumophila - a copycat eukaryote. Microbiology (United Kingdom), 2022, 168, .	0.7	14
4	Migration of <i>Acanthamoeba</i> through <i>Legionella</i> biofilms is regulated by the bacterial <scp>Lqsâ€LvbR</scp> network, effector proteins and the flagellum. Environmental Microbiology, 2022,	1.8	4
5	Quorum sensing controls persistence, resuscitation, and virulence of <i>Legionella</i> subpopulations in biofilms. ISME Journal, 2021, 15, 196-210.	4.4	36
6	Zn ²⁺ Intoxication of Mycobacterium marinum during Dictyostelium discoideum Infection Is Counteracted by Induction of the Pathogen Zn ²⁺ Exporter CtpC. MBio, 2021, 12, .	1.8	12
7	Dictyostelium lacking the single atlastin homolog Sey1 shows aberrant ER architecture, proteolytic processes and expansion of the Legionella â€containing vacuole. Cellular Microbiology, 2021, 23, e13318.	1.1	7
8	Quorum sensing governs a transmissive <i>Legionella</i> subpopulation at the pathogen vacuole periphery. EMBO Reports, 2021, 22, e52972.	2.0	21
9	Dictyostelium Dynamin Superfamily GTPases Implicated in Vesicle Trafficking and Host-Pathogen Interactions. Frontiers in Cell and Developmental Biology, 2021, 9, 731964.	1.8	O
10	The Polar <i>Legionella</i> Icm/Dot T4SS Establishes Distinct Contact Sites with the Pathogen Vacuole Membrane. MBio, 2021, 12, e0218021.	1.8	10
11	Systematic exploration of Escherichia coli phage–host interactions with the BASEL phage collection. PLoS Biology, 2021, 19, e3001424.	2.6	90
12	Evolution and function of bacterial <scp>RCC1 < /scp>repeat effectors. Cellular Microbiology, 2020, 22, e13246.</scp>	1.1	18
13	Divergent Evolution of <i>Legionella</i> RCC1 Repeat Effectors Defines the Range of Ran GTPase Cycle Targets. MBio, 2020, 11, .	1.8	11
14	Identification of Anti-Mycobacterium and Anti-Legionella Compounds With Potential Distinctive Structural Scaffolds From an HD-PBL Using Phenotypic Screens in Amoebae Host Models. Frontiers in Microbiology, 2020, 11, 266.	1.5	8
15	Transcriptional Responses of Dictyostelium discoideum Exposed to Different Classes of Bacteria. Frontiers in Microbiology, 2020, 11, 410.	1.5	11
16	Legionella pneumophila. , 2020, , .		0
17	Phosphoinositides and the Fate of Legionella in Phagocytes. Frontiers in Immunology, 2020, 11, 25.	2.2	33
18	The structure of the <i>Legionella</i> response regulator LqsR reveals amino acids critical for phosphorylation and dimerization. Molecular Microbiology, 2020, 113, 1070-1084.	1.2	13

#	Article	IF	Citations
19	Legionella quorum sensing meets cyclic-di-GMP signaling. Current Opinion in Microbiology, 2020, 55, 9-16.	2.3	14
20	<scp> <i>Mycobacterium marinum</i> </scp> produces distinct mycobactin and carboxymycobactin siderophores to promote growth in broth and phagocytes. Cellular Microbiology, 2020, 22, e13163.	1.1	14
21	Perturbation of Legionella Cell Infection by RNA Interference. Methods in Molecular Biology, 2019, 1921, 221-238.	0.4	1
22	Single Cell Analysis of Legionella and Legionella-Infected Acanthamoeba by Agarose Embedment. Methods in Molecular Biology, 2019, 1921, 191-204.	0.4	4
23	Distinct <scp><i>Mycobacterium marinum</i></scp> phosphatases determine pathogen vacuole phosphoinositide pattern, phagosome maturation, and escape to the cytosol. Cellular Microbiology, 2019, 21, e13008.	1.1	39
24	Quantitative Imaging Flow Cytometry of Legionella-Containing Vacuoles in Dually Fluorescence-Labeled Dictyostelium. Methods in Molecular Biology, 2019, 1921, 161-177.	0.4	3
25	PIKfyve/Fab1 is required for efficient V-ATPase and hydrolase delivery to phagosomes, phagosomal killing, and restriction of Legionella infection. PLoS Pathogens, 2019, 15, e1007551.	2.1	35
26	Quorum sensing modulates the formation of virulent Legionella persisters within infected cells. Nature Communications, 2019, 10, 5216.	5.8	30
27	The pleiotropic <i>Legionella</i> transcription factor LvbR links the Lqs and câ€diâ€GMP regulatory networks to control biofilm architecture and virulence. Environmental Microbiology, 2019, 21, 1035-1053.	1.8	19
28	Role of the small GTPase Rap1 in signal transduction, cell dynamics and bacterial infection. Small GTPases, 2019, 10, 336-342.	0.7	13
29	Migration of Acanthamoeba castellanii Through Legionella Biofilms. Methods in Molecular Biology, 2019, 1921, 79-89.	0.4	2
30	Quantitative Imaging Flow Cytometry of Legionella-Infected Dictyostelium Amoebae Reveals the Impact of Retrograde Trafficking on Pathogen Vacuole Composition. Applied and Environmental Microbiology, 2018, 84, .	1.4	13
31	Formation of the Legionella-containing vacuole: phosphoinositide conversion, GTPase modulation and ER dynamics. International Journal of Medical Microbiology, 2018, 308, 49-57.	1.5	89
32	Legionella quorum sensing and its role in pathogen–host interactions. Current Opinion in Microbiology, 2018, 41, 29-35.	2.3	28
33	<i>Legionella</i> -Containing Vacuoles Capture PtdIns(4) <i>P</i> -Rich Vesicles Derived from the Golgi Apparatus. MBio, 2018, 9, .	1.8	36
34	Analysis of Legionella Metabolism by Pathogen Vacuole Proteomics. Methods in Molecular Biology, 2018, 1841, 59-76.	0.4	2
35	A uniform cloning platform for mycobacterial genetics and protein production. Scientific Reports, 2018, 8, 9539.	1.6	17
36	Acanthamoeba and Dictyostelium as Cellular Models for Legionella Infection. Frontiers in Cellular and Infection Microbiology, 2018, 8, 61.	1.8	101

#	Article	IF	CITATIONS
37	The large GTPase atlastin controls ER remodeling around a pathogen vacuole. Communicative and Integrative Biology, 2018, 11, 1-5.	0.6	6
38	Comparative Proteomics of Purified Pathogen Vacuoles Correlates Intracellular Replication of Legionella pneumophila with the Small GTPase Ras-related protein 1 (Rap1). Molecular and Cellular Proteomics, 2017, 16, 622-641.	2.5	54
39	Legionella pneumophila Modulates Mitochondrial Dynamics to Trigger Metabolic Repurposing of Infected Macrophages. Cell Host and Microbe, 2017, 22, 302-316.e7.	5.1	187
40	Structural insights into Legionella RidL-Vps29 retromer subunit interaction reveal displacement of the regulator TBC1D5. Nature Communications, 2017, 8, 1543.	5.8	47
41	Subversion of Host Membrane Dynamics by the Legionella Dot/Icm Type IV Secretion System. Current Topics in Microbiology and Immunology, 2017, 413, 221-242.	0.7	13
42	ER remodeling by the large GTPase atlastin promotes vacuolar growth of <i>Legionella pneumophila</i> . EMBO Reports, 2017, 18, 1817-1836.	2.0	51
43	Formation of the Legionella Replicative Compartment at the Crossroads of Retrograde Trafficking. Frontiers in Cellular and Infection Microbiology, 2017, 7, 482.	1.8	58
44	Intra-Species and Inter-Kingdom Signaling of Legionella pneumophila. Frontiers in Microbiology, 2017, 8, 79.	1.5	42
45	Inhibitors of Mycobacterium marinum virulence identified in a Dictyostelium discoideum host model. PLoS ONE, 2017, 12, e0181121.	1.1	26
46	IFNs Modify the Proteome of Legionella-Containing Vacuoles and Restrict Infection Via IRG1-Derived Itaconic Acid. PLoS Pathogens, 2016, 12, e1005408.	2.1	195
47	Pathway analysis using ¹³ Câ€glycerol and other carbon tracers reveals a bipartite metabolism of <i>Legionella pneumophila</i> i>. Molecular Microbiology, 2016, 100, 229-246.	1.2	51
48	Inflammasome Recognition and Regulation of the Legionella Flagellum. Current Topics in Microbiology and Immunology, 2016, 397, 161-181.	0.7	11
49	The αâ€hydroxyketone LAlâ€1 regulates motility, Lqsâ€dependent phosphorylation signalling and gene expression of <i>Legionella pneumophila</i>). Molecular Microbiology, 2016, 99, 778-793.	1.2	38
50	Metabolism of <i>myo</i> -Inositol by Legionella pneumophila Promotes Infection of Amoebae and Macrophages. Applied and Environmental Microbiology, 2016, 82, 5000-5014.	1.4	35
51	<i>Legionella pneumophila</i> S1P-lyase targets host sphingolipid metabolism and restrains autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1901-1906.	3.3	115
52	Subversion of Retrograde Trafficking by Translocated Pathogen Effectors. Trends in Microbiology, 2016, 24, 450-462.	3.5	108
53	In Silico Driven Design and Synthesis of Rhodanine Derivatives as Novel Antibacterials Targeting the Enoyl Reductase InhA. Journal of Medicinal Chemistry, 2016, 59, 10917-10928.	2.9	35
54	<i>Legionella</i> shows a diverse secondary metabolism dependent on a broad spectrum Sfp-type phosphopantetheinyl transferase. PeerJ, 2016, 4, e2720.	0.9	5

#	Article	IF	CITATIONS
55	Formation of a pathogen vacuole according to <i>Legionella pneumophila</i> : how to kill one bird with many stones. Cellular Microbiology, 2015, 17, 935-950.	1.1	139
56	Purification and proteomics of pathogen-modified vacuoles and membranes. Frontiers in Cellular and Infection Microbiology, 2015, 5, 48.	1.8	56
57	Subversion of Cell-Autonomous Immunity and Cell Migration by Legionella pneumophila Effectors. Frontiers in Immunology, 2015, 6, 447.	2.2	21
58	Inter-kingdom Signaling by the Legionella Quorum Sensing Molecule LAI-1 Modulates Cell Migration through an IQGAP1-Cdc42-ARHGEF9-Dependent Pathway. PLoS Pathogens, 2015, 11, e1005307.	2.1	36
59	Amoebae-Based Screening Reveals a Novel Family of Compounds Restricting Intracellular <i>Legionella pneumophila</i> . ACS Infectious Diseases, 2015, 1, 327-338.	1.8	15
60	Adrenergic antagonists restrict replication of Legionella. Microbiology (United Kingdom), 2015, 161, 1392-1406.	0.7	11
61	Phosphatidylinositol 4-phosphate and phosphatidylinositol 3-phosphate regulate phagolysosome biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4636-4641.	3.3	72
62	Metabolism of the vacuolar pathogen Legionella and implications for virulence. Frontiers in Cellular and Infection Microbiology, 2014, 4, 125.	1.8	51
63	Live-Cell Imaging of Phosphoinositide Dynamics and Membrane Architecture during <i>Legionella</i> Infection. MBio, 2014, 5, e00839-13.	1.8	108
64	A Type IV Translocated Legionella Cysteine Phytase Counteracts Intracellular Growth Restriction by Phytate. Journal of Biological Chemistry, 2014, 289, 34175-34188.	1.6	24
65	Icm/Dot-dependent inhibition of phagocyte migration byLegionellais antagonized by a translocated Ran GTPase activator. Cellular Microbiology, 2014, 16, n/a-n/a.	1.1	52
66	The Legionella longbeachae Icm/Dot Substrate SidC Selectively Binds Phosphatidylinositol 4-Phosphate with Nanomolar Affinity and Promotes Pathogen Vacuole-Endoplasmic Reticulum Interactions. Infection and Immunity, 2014, 82, 4021-4033.	1.0	47
67	Beyond Rab GTPases Legionella activates the small GTPase Ran to promote microtubule polymerization, pathogen vacuole motility, and infection. Small GTPases, 2014, 5, e972859.	0.7	12
68	The natural alternative: protozoa as cellular models for <i>Legionella</i> i>infection. Cellular Microbiology, 2014, 16, 15-26.	1.1	118
69	Phosphorylation signalling through the <scp><i>L</i></scp> <i>egionella</i> quorum sensing histidine kinases <scp>LqsS</scp> and <scp>LqsT</scp> converges on the response regulator <scp>LqsR</scp> . Molecular Microbiology, 2014, 92, 1039-1055.	1.2	27
70	Functional analysis of novel Rab GTPases identified in the proteome of purifiedLegionella-containing vacuoles from macrophages. Cellular Microbiology, 2014, 16, n/a-n/a.	1.1	106
71	Live Cell Imaging of Phosphoinositide Dynamics During Legionella Infection. Methods in Molecular Biology, 2014, 1197, 153-167.	0.4	23
72	Establishment and Validation of Whole-Cell Based Fluorescence Assays to Identify Anti-Mycobacterial Compounds Using the Acanthamoeba castellanii - Mycobacterium marinum Host-Pathogen System. PLoS ONE, 2014, 9, e87834.	1.1	41

#	Article	IF	Citations
73	Beyond Rab GTPases: Legionella activates the small GTPase Ran to promote microtubule polymerization, pathogen vacuole motility, and infection. Small GTPases, 2014, 5, .	0.7	17
74	The Legionella Effector RidL Inhibits Retrograde Trafficking to Promote Intracellular Replication. Cell Host and Microbe, 2013, 14, 38-50.	5.1	136
75	Biosynthesis of the Natural Fluorophore Legioliulin from <i>Legionella</i> . ChemBioChem, 2013, 14, 1415-1418.	1.3	13
76	Studying the fate of non-volatile organic compounds in a commercial plasma air purifier. Journal of Hazardous Materials, 2013, 256-257, 76-83.	6.5	8
77	Pathogen Vacuole Purification from Legionella-Infected Amoeba and Macrophages. Methods in Molecular Biology, 2013, 954, 309-321.	0.4	25
78	Immunomagnetic Purification of Fluorescent Legionella-Containing Vacuoles. Methods in Molecular Biology, 2013, 983, 431-443.	0.4	12
79	Legionnaires' Disease. , 2013, , 147-217.		12
80	Activation of Ran GTPase by a Legionella Effector Promotes Microtubule Polymerization, Pathogen Vacuole Motility and Infection. PLoS Pathogens, 2013, 9, e1003598.	2.1	94
81	The <i><scp>L</scp>egionella pneumophila</i> orphan sensor kinase <scp>LqsT</scp> regulates competence and pathogenâ€"host interactions as a component of the <scp>LAI</scp> circuit. Environmental Microbiology, 2013, 15, 646-662.	1.8	59
82	Phosphoinositide Lipids and the Legionella Pathogen Vacuole. Current Topics in Microbiology and Immunology, 2013, 376, 155-173.	0.7	54
83	Mechanism of Rab1b deactivation by the <i>Legionella pneumophila</i> GAP LepB. EMBO Reports, 2013, 14, 199-205.	2.0	60
84	Analysis of Legionella Infection by Flow Cytometry. Methods in Molecular Biology, 2013, 954, 233-249.	0.4	22
85	Interactions of Legionella Effector Proteins with Host Phosphoinositide Lipids. Methods in Molecular Biology, 2013, 954, 367-380.	0.4	10
86	Exploring Anti-Bacterial Compounds against Intracellular Legionella. PLoS ONE, 2013, 8, e74813.	1.1	31
87	Identification of Protective B Cell Antigens of <i>Legionella pneumophila</i> . Journal of Immunology, 2012, 189, 841-849.	0.4	21
88	Purification of Pathogen Vacuoles from $<$ em $>$ Legionella $<$ /em $>$ -infected Phagocytes. Journal of Visualized Experiments, 2012, , .	0.2	4
89	α-Hydroxyketone Synthesis and Sensing by Legionella and Vibrio. Sensors, 2012, 12, 2899-2919.	2.1	43
90	Secretive Bacterial Pathogens and the Secretory Pathway. Traffic, 2012, 13, 1187-1197.	1.3	80

#	Article	lF	Citations
91	Autoinducers Act as Biological Timers in Vibrio harveyi. PLoS ONE, 2012, 7, e48310.	1.1	57
92	<i>Legionella</i> spp. outdoors: colonization, communication and persistence. Environmental Microbiology Reports, 2011, 3, 286-296.	1.0	101
93	Anchors for Effectors: Subversion of Phosphoinositide Lipids by Legionella. Frontiers in Microbiology, 2011, 2, 91.	1.5	76
94	Nonhematopoietic Cells Are Key Players in Innate Control of Bacterial Airway Infection. Journal of Immunology, 2011, 186, 3130-3137.	0.4	51
95	The autoinducer synthase LqsA and putative sensor kinase LqsS regulate phagocyte interactions, extracellular filaments and a genomic island of <i>Legionella pneumophila</i> Microbiology, 2010, 12, 1243-1259.	1.8	59
96	Isolation of <i>Legionella</i> à€Containing Vacuoles by Immunoâ€Magnetic Separation. Current Protocols in Cell Biology, 2010, 46, Unit 3.34.	2.3	21
97	Antibodies protect against intracellular bacteria by Fc receptor-mediated lysosomal targeting. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20441-20446.	3.3	87
98	Bacterial gene regulation by α-hydroxyketone signaling. Trends in Microbiology, 2010, 18, 288-297.	3.5	79
99	Endosomal and secretory markers of the <i>Legionella </i> -containing vacuole. Communicative and Integrative Biology, 2009, 2, 107-109.	0.6	29
100	Rab1 Guanine Nucleotide Exchange Factor SidM Is a Major Phosphatidylinositol 4-Phosphate-binding Effector Protein of Legionella pneumophila. Journal of Biological Chemistry, 2009, 284, 4846-4856.	1.6	239
101	Pathogen trafficking pathways and host phosphoinositide metabolism. Molecular Microbiology, 2009, 71, 1341-1352.	1.2	124
102	The inositol polyphosphate 5-phosphatase OCRL1 restricts intracellular growth of $\langle i \rangle$ Legionella $\langle i \rangle$, localizes to the replicative vacuole and binds to the bacterial effector LpnE. Cellular Microbiology, 2009, 11, 442-460.	1.1	125
103	Bacterial Jailbreak Sounds Cellular Alarm: Phagosome Membrane Remnants Trigger Signaling. Cell Host and Microbe, 2009, 6, 102-104.	5.1	3
104	Proteome Analysis of <i>Legionella </i> Vacuoles Purified by Magnetic Immunoseparation Reveals Secretory and Endosomal GTPases. Traffic, 2009, 10, 76-87.	1.3	163
105	lcm/Dot-dependent upregulation of phagocytosis by Legionella pneumophila. Molecular Microbiology, 2008, 42, 603-617.	1.2	158
106	The <i>Legionella pneumophila</i> phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cellular Microbiology, 2008, 10, 2416-2433.	1.1	197
107	Molecular Pathogenesis of <i>Shigella </i> spp.: Controlling Host Cell Signaling, Invasion, and Death by Type III Secretion. Clinical Microbiology Reviews, 2008, 21, 134-156.	5.7	504
108	A Novel Role for Neutrophils As Critical Activators of NK Cells. Journal of Immunology, 2008, 181, 7121-7130.	0.4	128

#	Article	IF	CITATIONS
109	Synergistic Contribution of the <i>Legionella pneumophila lqs < /i>Genes to Pathogen-Host Interactions. Journal of Bacteriology, 2008, 190, 7532-7547.</i>	1.0	66
110	The Legionella Autoinducer Synthase LqsA Produces an \hat{l} ±-Hydroxyketone Signaling Molecule. Journal of Biological Chemistry, 2008, 283, 18113-18123.	1.6	101
111	Expression of Legionella pneumophila paralogous lipid A biosynthesis genes under different growth conditions. Microbiology (United Kingdom), 2007, 153, 3817-3829.	0.7	28
112	Intracellular type III secretion by cytoplasmic Shigella flexneri promotes caspase-1-dependent macrophage cell death. Microbiology (United Kingdom), 2007, 153, 2862-2876.	0.7	34
113	Induction and protective role of antibodies in <i>Legionella pneumophila</i> infection. European Journal of Immunology, 2007, 37, 3414-3423.	1.6	40
114	Environmental predators as models for bacterial pathogenesis. Environmental Microbiology, 2007, 9, 563-575.	1.8	183
115	Cholesterol is required to trigger caspase-1 activation and macrophage apoptosis after phagosomal escape of Shigella. Cellular Microbiology, 2007, 9, 265-278.	1.1	25
116	The Legionella pneumophila response regulator LqsR promotes host cell interactions as an element of the virulence regulatory network controlled by RpoS and LetA. Cellular Microbiology, 2007, 9, 2903-2920.	1.1	169
117	Modulation of phosphoinositide metabolism by pathogenic bacteria. Cellular Microbiology, 2006, 8, 1697-1706.	1.1	71
118	Legionella pneumophila Exploits PI(4)P to Anchor Secreted Effector Proteins to the Replicative Vacuole. PLoS Pathogens, 2006, 2, e46.	2.1	260
119	MyD88-Dependent IFN-Î ³ Production by NK Cells Is Key for Control of <i>Legionella pneumophila</i> Infection. Journal of Immunology, 2006, 176, 6162-6171.	0.4	107
120	Planktonic Replication Is Essential for Biofilm Formation by Legionella pneumophila in a Complex Medium under Static and Dynamic Flow Conditions. Applied and Environmental Microbiology, 2006, 72, 2885-2895.	1.4	133
121	The amoebae plate test implicates a paralogue of lpxB in the interaction of Legionella pneumophila with Acanthamoeba castellanii. Microbiology (United Kingdom), 2005, 151, 167-182.	0.7	39
122	Macroautophagy is dispensable for intracellular replication of Legionella pneumophila in Dictyostelium discoideum. Molecular Microbiology, 2003, 51, 63-72.	1.2	117
123	Identification of the catalytic triad in tripeptidyl-peptidase II through site-directed mutagenesis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2002, 1601, 149-154.	1.1	14
124	Tripeptidyl Peptidase II Promotes Maturation of Caspase-1 in Shigella flexneri -Induced Macrophage Apoptosis. Infection and Immunity, 2000, 68, 5502-5508.	1.0	45
125	Host responses to secreted Shigella virulence factors. Current Opinion in Infectious Diseases, 1999, 12, 221-228.	1.3	5
126	Shigella-induced Apoptosis Is Dependent on Caspase-1 Which Binds to IpaB. Journal of Biological Chemistry, 1998, 273, 32895-32900.	1.6	363

#	Article	IF	Citations
127	Macrophage apoptosis in microbial infections. Parasitology, 1997, 115, 79-87.	0.7	42
128	Sequence of a Gene Cluster from Malonomonas Rubra Encoding Components of the Malonate Decarboxylase Na+ Pump and Evidence for Their Function. FEBS Journal, 1997, 245, 103-115.	0.2	41
129	Enzymic and genetic basis for bacterial growth on malonate. Molecular Microbiology, 1997, 25, 3-10.	1.2	53
130	The Acyl Carrier Protein of Malonate Decarboxylase ofMalonomonas rubraContains 2â€~(5â€~Ââ€~Phosphoribosyl)-3â€~-dephosphocoenzyme A as a Prosthetic Groupâ€. Biochemistry, 1996, 35, 4689-4696.	1.2	37
131	Malonate Decarboxylase of Klebsiella pneumoniae Catalyses the Turnover of Acetyl and Malonyl Thioester Residues on a Coenzyme-A-Like Prosthetic Group. FEBS Journal, 1996, 237, 221-228.	0.2	34
132	Stereochemical course of malonate decarboxylation in Malonomonas rubra. Journal of the American Chemical Society, 1995, 117, 1153-1154.	6.6	10
133	Purification and characterization of a cytoplasmic enzyme component of the Na+-activated malonate decarboxylase system of Malonomonas rubra: acetyl-S-acyl carrier protein: malonate acyl carrier protein-SH transferase. Archives of Microbiology, 1994, 162, 48-56.	1.0	13
134	The malonate decarboxylase enzyme system of Malonomonas rubra: evidence for the cytoplasmic location of the biotin-containing component. Archives of Microbiology, 1993, 160, 126-131.	1.0	14
135	Malonate decarboxylase of Malonomonas rubra, a novel type of biotin-containing acetyl enzyme. FEBS Journal, 1992, 207, 117-123.	0.2	40
136	A Role for Phosphoinositide Metabolism in Phagocytosis and Intracellular Replication of < i>Legionella pneumophila < l i>. , 0, , 292-296.		2
137	Identification of a Cytotoxic Legionella pneumophila LpxB Paralogue in a Multicopy Suppressor Screen using Acanthamoeba castellanii as a Selective Host. , 0, , 203-206.		0
138	Biofilm Formation of Legionella pneumophila in Complex Medium under Static and Dynamic Flow Conditions., 0,, 398-402.		0