Wei-Sheng Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5010850/publications.pdf

Version: 2024-02-01

623734 610901 30 619 14 24 citations g-index h-index papers 30 30 30 511 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The national forest inventory in China: history - results - international context. Forest Ecosystems, $2015, 2, .$	3.1	74
2	Individual tree biomass equations and growth models sensitive to climate variables for Larix spp. in China. European Journal of Forest Research, 2017, 136, 233-249.	2.5	65
3	Comparison and Evaluation of Three Methods for Estimating Forest above Ground Biomass Using TM and GLAS Data. Remote Sensing, 2017, 9, 341.	4.0	44
4	Height–diameter equations for larch plantations in northern and northeastern China: a comparison of the mixed-effects, quantile regression and generalized additive models. Forestry, 2016, 89, 434-445.	2.3	36
5	Using nonlinear mixed model and dummy variable model approaches to develop origin-based individual tree biomass equations. Trees - Structure and Function, 2015, 29, 275-283.	1.9	33
6	Construction of compatible and additive individual-tree biomass models for <i>Pinustabulaeformis</i> i>in China. Canadian Journal of Forest Research, 2017, 47, 467-475.	1.7	32
7	Modeling compatible single-tree aboveground biomass equations for masson pine (Pinus massoniana) in southern China. Journal of Forestry Research, 2012, 23, 593-598.	3.6	31
8	Integrating regional climate change into allometric equations for estimating tree aboveground biomass of Masson pine in China. Annals of Forest Science, 2017, 74, 1.	2.0	31
9	Development of a Mixed-Effects Individual-Tree Basal Area Increment Model for Oaks (Quercus spp.) Considering Forest Structural Diversity. Forests, 2019, 10, 474.	2.1	28
10	Integrated individual tree biomass simultaneous equations for two larch species in northeastern and northern China. Scandinavian Journal of Forest Research, 2015, 30, 594-604.	1.4	27
11	Modeling Crown Biomass for Four Pine Species in China. Forests, 2015, 6, 433-449.	2.1	26
12	Calorific values and ash contents of different parts of Masson pine trees in southern China. Journal of Forestry Research, 2014, 25, 779-786.	3.6	21
13	Generic linear mixed-effects individual-tree biomass models for <i>Pinus massoniana</i> i>in southern China. Southern Forests, 2014, 76, 47-56.	0.7	19
14	Development of monitoring and assessment of forest biomass and carbon storage in China. Forest Ecosystems, 2014, 1 , \dots	3.1	18
15	Developing Aboveground Biomass Equations Both Compatible with Tree Volume Equations and Additive Systems for Single-Trees in Poplar Plantations in Jiangsu Province, China. Forests, 2016, 7, 32.	2.1	16
16	Individual Tree Biomass Models to Estimate Forest Biomass for Large Spatial Regions Developed Using Four Pine Species in China. Forest Science, 2017, 63, 241-249.	1.0	16
17	Does the Slope of the Self-thinning Line Remain a Constant Value across Different Site Qualities?—An Implication for Plantation Density Management. Forests, 2017, 8, 355.	2.1	14
18	Developing individual tree-based models for estimating aboveground biomass of five key coniferous species in China. Journal of Forestry Research, 2018, 29, 1251-1261.	3.6	14

#	Article	IF	CITATIONS
19	Relationship between the geographical environment and the forest carbon sink capacity in China based on an individual-tree growth-rate model. Ecological Indicators, 2022, 138, 108814.	6.3	12
20	A climate-sensitive transition matrix growth model for uneven-aged mixed-species oak forests in North China. Forestry, 2021, 94, 258-277.	2.3	10
21	Uncertainty assessment in aboveground biomass estimation at the regional scale using a new method considering both sampling error and model error. Canadian Journal of Forest Research, 2017, 47, 1095-1103.	1.7	9
22	Development of Crown Ratio and Height to Crown Base Models for Masson Pine in Southern China. Forests, 2020, 11, 1216.	2.1	9
23	Developing national and regional individual tree biomass models and analyzing impact of climatic factors on biomass estimation for poplar plantations in China. Trees - Structure and Function, 2021, 35, 93-102.	1.9	9
24	A management tool for reducing the potential risk of windthrow for coastal Casuarina equisetifolia L. stands on Hainan Island, China. European Journal of Forest Research, 2017, 136, 543-554.	2.5	8
25	Spatial Heterogeneity of Climate Change Effects on Dominant Height of Larch Plantations in Northern and Northeastern China. Forests, 2016, 7, 151.	2.1	5
26	Quantifying the Effects of Stand and Climate Variables on Biomass of Larch Plantations Using Random Forests and National Forest Inventory Data in North and Northeast China. Sustainability, 2022, 14, 5580.	3.2	5
27	Climate Change Effects on Height–Diameter Allometric Relationship Vary with Tree Species and Size for Larch Plantations in Northern and Northeastern China. Forests, 2022, 13, 468.	2.1	3
28	Construction of tree volume equations for Chinese fir plantations in Guizhou Province, southwestern China. Forest Science and Practice, 2013, 15, 179-185.	0.2	2
29	Effect of Climate on Carbon Storage Growth Models for Three Major Coniferous Plantations in China Based on National Forest Inventory Data. Forests, 2022, 13, 882.	2.1	2
30	Development of Mixed-Effects Individual-Tree Diameter Increment Model for <i>Casuarina Equisetifolia</i> Considering the Effects of Tree-Size Diversity, Tree Density Reduction, and Climate. Journal of Sustainable Forestry, 2023, 42, 553-572.	1.4	0