
Seth B Darling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5010667/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ionic Transport in Electrostatic Janus Membranes. An Explicit Solvent Molecular Dynamic Simulation. ACS Nano, 2022, 16, 3768-3775.	7.3	9
2	Covalent Organic Frameworks for Water Treatment. Advanced Materials Interfaces, 2021, 8, .	1.9	70
3	Solar-driven evaporators for water treatment: challenges and opportunities. Environmental Science: Water Research and Technology, 2021, 7, 24-39.	1.2	94

Hall of Fame Article: Covalent Organic Frameworks for Water Treatment (Adv. Mater. Interfaces) Tj ETQq000 rgBT/Qverlock $_{1.9}^{10}$ Vorlock $_{1.9}^{10}$ Tf 50 6

5	Drawing on Membrane Photocatalysis for Fouling Mitigation. ACS Applied Materials & Interfaces, 2021, 13, 14844-14865.	4.0	87
6	Sandwich-Structured Photothermal Wood for Durable Moisture Harvesting and Pumping. ACS Applied Materials & amp; Interfaces, 2021, 13, 33713-33721.	4.0	18
7	Advanced Materials for Energy-Water Systems: The Central Role of Water/Solid Interfaces in Adsorption, Reactivity, and Transport. Chemical Reviews, 2021, 121, 9450-9501.	23.0	43
8	Porous Janus materials with unique asymmetries and functionality. Materials Today, 2021, 51, 626-647.	8.3	113
9	Suspended Membrane Evaporators Integrating Environmental and Solar Evaporation for Oily Wastewater Purification. ACS Applied Materials & Interfaces, 2021, 13, 39513-39522.	4.0	54
10	Maximizing selectivity: An analysis of isoporous membranes. Journal of Membrane Science, 2021, 633, 119389.	4.1	29
11	Electronic Conductivity of Nanoporous Indium Oxide Derived from Sequential Infiltration Synthesis. Journal of Physical Chemistry C, 2021, 125, 21191-21198.	1.5	9
12	Surface Zeta Potential of ALD-Grown Metal-Oxide Films. Langmuir, 2021, 37, 11618-11624.	1.6	12
13	When SLIPS meets TIPS: An endogenous lubricant-infused surface by taking the diluent as the lubricant. Chemical Engineering Journal, 2021, 425, 130600.	6.6	12
14	Water treatment based on atomically engineered materials: Atomic layer deposition and beyond. Matter, 2021, 4, 3515-3548.	5.0	66
15	Selectivity of Per- and Polyfluoroalkyl Substance Sensors and Sorbents in Water. ACS Applied Materials & Interfaces, 2021, 13, 60789-60814.	4.0	39
16	Tailored PEDOT:PSS hole transport layer for higher performance in perovskite solar cells: Enhancement of electrical and optical properties with improved morphology. Journal of Energy Chemistry, 2020, 44, 41-50.	7.1	105
17	Recent progress in molecular engineering to tailor organic–inorganic interfaces in composite membranes. Molecular Systems Design and Engineering, 2020, 5, 433-444.	1.7	54
18	Ferric tannate photothermal material for efficient water distillation. Environmental Science: Water Research and Technology, 2020, 6, 911-915.	1.2	30

#	Article	IF	CITATIONS
19	Sharpening Nanofiltration: Strategies for Enhanced Membrane Selectivity. ACS Applied Materials & Interfaces, 2020, 12, 39948-39966.	4.0	242
20	Probing Diffuse Polymer Brush Interfaces Using Resonant Soft X-ray Scattering. Synchrotron Radiation News, 2020, 33, 24-30.	0.2	2
21	Selfâ€Cleaning Membranes: Visibleâ€Lightâ€Activated Photocatalytic Films toward Selfâ€Cleaning Membranes (Adv. Funct. Mater. 34/2020). Advanced Functional Materials, 2020, 30, 2070230.	7.8	36
22	Resolving the Atomic Structure of Sequential Infiltration Synthesis Derived Inorganic Clusters. ACS Nano, 2020, 14, 14846-14860.	7.3	25
23	Universal dynamics of coarsening during polymer-polymer thin-film spinodal dewetting kinetics. Physical Review E, 2020, 102, 032802.	0.8	5
24	Polycaprolactone: A Promising Addition to the Sequential Infiltration Synthesis Polymer Family Identified through <i>In Situ</i> Infrared Spectroscopy. ACS Applied Polymer Materials, 2020, 2, 5501-5510.	2.0	13
25	Introduction to molecular engineering for water technologies. Molecular Systems Design and Engineering, 2020, 5, 900-901.	1.7	2
26	Versatile coating with multifunctional performance for solar steam generation. Nano Energy, 2020, 74, 104886.	8.2	97
27	Visibleâ€Lightâ€Activated Photocatalytic Films toward Selfâ€Cleaning Membranes. Advanced Functional Materials, 2020, 30, 2002847.	7.8	74
28	Polyphenol‣ensitized Atomic Layer Deposition for Membrane Interface Hydrophilization. Advanced Functional Materials, 2020, 30, 1910062.	7.8	70
29	Sequential Infiltration Synthesis of Electronic Materials: Group 13 Oxides via Metal Alkyl Precursors. Chemistry of Materials, 2019, 31, 5274-5285.	3.2	48
30	Mussel-Inspired Surface Engineering for Water-Remediation Materials. Matter, 2019, 1, 115-155.	5.0	301
31	Procedure for the Transfer of Polymer Films Onto Porous Substrates with Minimized Defects. Journal of Visualized Experiments, 2019, , .	0.2	2
32	Water Treatment: Porphyrin Covalent Organic Framework (POF)-Based Interface Engineering for Solar Steam Generation (Adv. Mater. Interfaces 11/2019). Advanced Materials Interfaces, 2019, 6, 1970072.	1.9	5
33	Porphyrin Covalent Organic Framework (POF)â€Based Interface Engineering for Solar Steam Generation. Advanced Materials Interfaces, 2019, 6, 1900254.	1.9	76
34	Amino Acid Immobilization of Copper Surface Diffusion on Cu(111). Advanced Materials Interfaces, 2019, 6, 1900021.	1.9	7
35	Immobilized Cu Adatoms: Amino Acid Immobilization of Copper Surface Diffusion on Cu(111) (Adv.) Tj ETQq1 1	0.784314 1.9	rgBT /Overic
36	The chemical physics of sequential infiltration synthesis—A thermodynamic and kinetic perspective. Journal of Chemical Physics, 2019, 151, 190901.	1.2	76

#	Article	IF	CITATIONS
37	Enrichment and Distribution of Pb ²⁺ Ions in Zwitterionic Poly(cysteine methacrylate) Brushes at the Solid–Liquid Interface. Langmuir, 2019, 35, 17082-17089.	1.6	6
38	Chinese Ink: A Powerful Photothermal Material for Solar Steam Generation. Advanced Materials Interfaces, 2019, 6, 1801252.	1.9	100
39	Solar Steam: Chinese Ink: A Powerful Photothermal Material for Solar Steam Generation (Adv. Mater.) Tj ETQq1	1 0.78431 1.9	4 rgBT /Over
40	Sequential Infiltration Synthesis of Al2O3 in Polyethersulfone Membranes. Jom, 2019, 71, 212-223.	0.9	25
41	Membranes: Dopamine: Just the Right Medicine for Membranes (Adv. Funct. Mater. 8/2018). Advanced Functional Materials, 2018, 28, 1870052.	7.8	6
42	Performance modeling and valuation of snow-covered PV systems: examination of a simplified approach to decrease forecasting error. Environmental Science and Pollution Research, 2018, 25, 15484-15491.	2.7	14
43	Tailoring uniform gold nanoparticle arrays and nanoporous films for next-generation optoelectronic devices. Superlattices and Microstructures, 2018, 118, 1-6.	1.4	8
44	Nanofilms directly formed on macro-porous substrates for molecular and ionic sieving. Journal of Materials Chemistry A, 2018, 6, 2908-2913.	5.2	33
45	Dopamine: Just the Right Medicine for Membranes. Advanced Functional Materials, 2018, 28, 1705327.	7.8	222
46	Mitigating oil spills in the water column. Environmental Science: Water Research and Technology, 2018, 4, 40-47.	1.2	36
47	Substitutional Growth of Methylammonium Lead Iodide Perovskites in Alcohols. Advanced Energy Materials, 2018, 8, 1701726.	10.2	28
48	Atomic layer deposition for membrane interface engineering. Nanoscale, 2018, 10, 20505-20513.	2.8	74
49	Janus Membrane: Janus Membranes: Creating Asymmetry for Energy Efficiency (Adv. Mater. 43/2018). Advanced Materials, 2018, 30, 1870328.	11.1	7
50	Crises and opportunities at the energy-water interface. MRS Bulletin, 2018, 43, 404-405.	1.7	6
51	Perspective: Interfacial materials at the interface of energy and water. Journal of Applied Physics, 2018, 124, .	1.1	106
52	Janus Membranes: Creating Asymmetry for Energy Efficiency. Advanced Materials, 2018, 30, e1801495.	11.1	193
53	Crude-Oil-Repellent Membranes by Atomic Layer Deposition: Oxide Interface Engineering. ACS Nano, 2018, 12, 8678-8685.	7.3	150
54	Janus Membranes via Diffusionâ€Controlled Atomic Layer Deposition. Advanced Materials Interfaces, 2018, 5, 1800658.	1.9	59

#	Article	IF	CITATIONS
55	Sequential Infiltration Synthesis for the Design of Low Refractive Index Surface Coatings with Controllable Thickness. ACS Nano, 2017, 11, 2521-2530.	7.3	84
56	Molecular dynamics and charge transport in organic semiconductors: a classical approach to modeling electron transfer. Chemical Science, 2017, 8, 2597-2609.	3.7	13
57	Advanced oil sorbents using sequential infiltration synthesis. Journal of Materials Chemistry A, 2017, 5, 2929-2935.	5.2	114
58	Conformal Nitrogenâ€Doped TiO ₂ Photocatalytic Coatings for Sunlightâ€Activated Membranes. Advanced Sustainable Systems, 2017, 1, 1600041.	2.7	63
59	Photocatalysis: Conformal Nitrogenâ€Đoped TiO ₂ Photocatalytic Coatings for Sunlightâ€Activated Membranes (Adv. Sustainable Syst. 1â€2/2017). Advanced Sustainable Systems, 2017, 1, .	2.7	1
60	Photocatalytic Nanofiltration Membranes with Selfâ€Cleaning Property for Wastewater Treatment. Advanced Functional Materials, 2017, 27, 1700251.	7.8	245
61	Outstanding Reviewers for Energy & Environmental Science in 2016. Energy and Environmental Science, 2017, 10, 845-845.	15.6	0
62	Effect of Nanostructured Domains in Self-Assembled Block Copolymer Films on Sequential Infiltration Synthesis. Langmuir, 2017, 33, 13214-13223.	1.6	42
63	Novel colloidal materials from functionalized polyoxometalates. Inorganic Chemistry Communication, 2017, 84, 20-23.	1.8	4
64	Structure-property relationships in NOx sensor materials composed of arrays of vanadium oxide nanoclusters. Solid State Sciences, 2017, 74, 1-7.	1.5	2
65	Dewetting in immiscible polymer bilayer films. Physical Review Materials, 2017, 1, .	0.9	7
66	Difficulties and recommendations for more accurately predicting the performance of solar energy systems during the snow season. , 2016, , .		7
67	Planar mixed halide perovskite-PCBM solar cells on flexible glass substrates processed at low temperature without ITO. , 2016, , .		4
68	Coexistence of Two Electronic Nano-Phases on a CH ₃ NH ₃ PbI _{3–<i>x</i>} Cl _{<i>x</i>} Surface Observed in STM Measurements. ACS Applied Materials & Interfaces, 2016, 8, 29110-29116.	4.0	21
69	Room temperature, air crystallized perovskite film for high performance solar cells. Journal of Materials Chemistry A, 2016, 4, 10231-10240.	5.2	60
70	Charge generation in organic photovoltaics: a review of theory and computation. Molecular Systems Design and Engineering, 2016, 1, 10-24.	1.7	86
71	Graphene in perovskite solar cells: device design, characterization and implementation. Journal of Materials Chemistry A, 2016, 4, 6185-6235.	5.2	185
72	Membrane materials for water purification: design, development, and application. Environmental Science: Water Research and Technology, 2016, 2, 17-42.	1.2	494

#	Article	IF	CITATIONS
73	New Insights into Sequential Infiltration Synthesis. ECS Transactions, 2015, 69, 147-157.	0.3	35
74	Exciton size and quantum transport in nanoplatelets. Journal of Chemical Physics, 2015, 143, 224106.	1.2	5
75	Linking Group Influences Charge Separation and Recombination in Allâ€Conjugated Block Copolymer Photovoltaics. Advanced Functional Materials, 2015, 25, 5578-5585.	7.8	38
76	Kinetically Enhanced Approach for Rapid and Tunable Self-Assembly of Rod-Coil Block Copolymers. Macromolecular Rapid Communications, 2015, 36, 1329-1335.	2.0	7
77	Macromol. Rapid Commun. 14/2015. Macromolecular Rapid Communications, 2015, 36, 1376-1376.	2.0	0
78	Understanding the Role of Additives in Improving the Performance of Bulk Heterojunction Organic Solar Cells. Microscopy and Microanalysis, 2015, 21, 2439-2440.	0.2	1
79	L-Tryptophan on Cu(111): engineering a molecular labyrinth driven by indole groups. Nanotechnology, 2015, 26, 235604.	1.3	9
80	Kinetics for the Sequential Infiltration Synthesis of Alumina in Poly(methyl methacrylate): An Infrared Spectroscopic Study. Journal of Physical Chemistry C, 2015, 119, 14585-14592.	1.5	68
81	Rational Design of Thermally Stable, Bicontinuous Donor/Acceptor Morphologies with Conjugated Block Copolymer Additives. ACS Macro Letters, 2015, 4, 867-871.	2.3	30
82	Characterizing the Three-Dimensional Structure of Block Copolymers <i>via</i> Sequential Infiltration Synthesis and Scanning Transmission Electron Tomography. ACS Nano, 2015, 9, 5333-5347.	7.3	98
83	Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts. Energy and Environmental Science, 2015, 8, 1953-1968.	15.6	449
84	Efficient Perovskite Solar Cells by Temperature Control in Single and Mixed Halide Precursor Solutions and Films. Journal of Physical Chemistry C, 2015, 119, 25747-25753.	1.5	55
85	Isoindigo-based copolymers for polymer solar cells with efficiency over 7%. Journal of Materials Chemistry A, 2014, 2, 8026-8032.	5.2	51
86	New Insight into the Mechanism of Sequential Infiltration Synthesis from Infrared Spectroscopy. Chemistry of Materials, 2014, 26, 6135-6141.	3.2	102
87	Ï€-Conjugated gradient copolymers suppress phase separation and improve stability in bulk heterojunction solar cells. Journal of Materials Chemistry C, 2014, 2, 3401.	2.7	47
88	Polaron Structure and Transport in Fullerene Materials: Insights from First-Principles Calculations. Journal of Physical Chemistry C, 2014, 118, 21785-21797.	1.5	6
89	Domestic and overseas manufacturing scenarios of silicon-based photovoltaics: Life cycle energy and environmental comparative analysis. Solar Energy, 2014, 105, 669-678.	2.9	131
90	Process-Controlled Multiscale Morphologies in Metal-Containing Block Copolymer Thin Films. Journal of Nanoscience and Nanotechnology, 2014, 14, 2653-2657.	0.9	0

#	Article	IF	CITATIONS
91	Visualization of Hierarchical Nanodomains in Polymer/Fullerene Bulk Heterojunction Solar Cells. Microscopy and Microanalysis, 2014, 20, 1507-1513.	0.2	11
92	Improved conductive atomic force microscopy measurements on organic photovoltaic materials via mitigation of contact area uncertainty. Progress in Photovoltaics: Research and Applications, 2013, 21, 1433-1443.	4.4	15
93	The case for organic photovoltaics. RSC Advances, 2013, 3, 17633.	1.7	471
94	Model compounds based on poly(p-phenylenevinyleneborane) and terthiophene: Investigating the p–n junction in diblock copolymers. Polymer, 2013, 54, 3510-3520.	1.8	16
95	Additives for morphology control in high-efficiency organic solar cells. Materials Today, 2013, 16, 326-336.	8.3	483
96	Nanofabrication with metallopolymers ―recent developments and future perspectives. Polymer International, 2013, 62, 1123-1134.	1.6	26
97	Lanthanides: new metallic cathode materials for organic photovoltaic cells. Physical Chemistry Chemical Physics, 2013, 15, 13052.	1.3	11
98	Synthesis and Photovoltaic Effect in Dithieno[2,3â€ <i>d</i> :2′,3′â€ <i>d</i> ′]Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> ′]dithiopheneâ€Based C Advanced Materials, 2013, 25, 838-843.	conjugated	Potymers.
99	Delineation of the effects of water and oxygen on the degradation of organic photovoltaic devices. Solar Energy Materials and Solar Cells, 2013, 110, 36-42.	3.0	40
100	Emerging trends in metal-containing block copolymers: synthesis, self-assembly, and nanomanufacturing applications. Journal of Materials Chemistry C, 2013, 1, 2080.	2.7	73
101	Synthesis and Crystallinity of Conjugated Block Copolymers Prepared by Click Chemistry. Macromolecules, 2013, 46, 2636-2645.	2.2	40
102	Detection and role of trace impurities in high-performance organic solar cells. Energy and Environmental Science, 2013, 6, 1513.	15.6	157
103	Concurrent Quantitative Conductivity and Mechanical Properties Measurements of Organic Photovoltaic Materials using AFM. Journal of Visualized Experiments, 2013, , .	0.2	2
104	A simple and inexpensive encapsulation route for high-throughput characterization of organic photovoltaic devices. , 2012, , .		0
105	Optimizing luminescent solar concentrator design. Energy and Environmental Science, 2012, 5, 5798-5802.	15.6	61
106	Deciphering the uncertainties in life cycle energy and environmental analysis of organic photovoltaics. Energy and Environmental Science, 2012, 5, 9163.	15.6	97
107	Supramolecular Conjugated Block Copolymers. Macromolecules, 2012, 45, 6571-6579.	2.2	36
108	Morphology characterization in organic and hybrid solar cells. Energy and Environmental Science, 2012, 5, 8045.	15.6	379

7

#	Article	IF	CITATIONS
109	Vacuum-Deposited Small-Molecule Organic Solar Cells with High Power Conversion Efficiencies by Judicious Molecular Design and Device Optimization. Journal of the American Chemical Society, 2012, 134, 13616-13623.	6.6	260
110	Enhanced Lithographic Imaging Layer Meets Semiconductor Manufacturing Specification a Decade Early. Advanced Materials, 2012, 24, 2608-2613.	11.1	67
111	Ultrathin molybdenum oxide anode buffer layer for organic photovoltaic cells formed using atomic layer deposition. Solar Energy Materials and Solar Cells, 2012, 99, 235-239.	3.0	88
112	Assumptions and the levelized cost of energy for photovoltaics. Energy and Environmental Science, 2011, 4, 3133.	15.6	317
113	Enhanced polymeric lithography resists via sequential infiltration synthesis. Journal of Materials Chemistry, 2011, 21, 11722.	6.7	73
114	Optoelectronic Properties and Charge Transfer in Donor–Acceptor All-Conjugated Diblock Copolymers. Journal of Physical Chemistry C, 2011, 115, 9260-9266.	1.5	64
115	A Route to Nanoscopic Materials <i>via</i> Sequential Infiltration Synthesis on Block Copolymer Templates. ACS Nano, 2011, 5, 4600-4606.	7.3	244
116	Enhanced Block Copolymer Lithography Using Sequential Infiltration Synthesis. Journal of Physical Chemistry C, 2011, 115, 17725-17729.	1.5	168
117	Tetrathienoanthracene-Based Copolymers for Efficient Solar Cells. Journal of the American Chemical Society, 2011, 133, 3284-3287.	6.6	156
118	Hierarchical Nanomorphologies Promote Exciton Dissociation in Polymer/Fullerene Bulk Heterojunction Solar Cells. Nano Letters, 2011, 11, 3707-3713.	4.5	415
119	Polythiophene-block-polyfluorene and Polythiophene-block-poly(fluorene-co-benzothiadiazole): Insights into the Self-Assembly of All-Conjugated Block Copolymers. Macromolecules, 2011, 44, 530-539.	2.2	120
120	Self-assembled monolayer-modified block copolymers for chemical surface nanopatterning. Materials Chemistry and Physics, 2011, 125, 382-385.	2.0	4
121	Density functional theory as a guide for the design of pyran dyes for dye-sensitized solar cells. Monatshefte Für Chemie, 2011, 142, 45-52.	0.9	6
122	Mesoscale morphologies in polymer thin films. Progress in Polymer Science, 2011, 36, 793-812.	11.8	89
123	Etch properties of resists modified by sequential infiltration synthesis. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 06FG01.	0.6	49
124	2010 Visualization Challenge. Science, 2011, 331, 847-847.	6.0	2
125	Block Copolymer Lithography as a Facile Route for Developing Nanowire-Like Arrays. Advanced Science Letters, 2011, 4, 437-441.	0.2	6
126	Nanoscopic Patterned Materials with Tunable Dimensions via Atomic Layer Deposition on Block Copolymers. Advanced Materials, 2010, 22, 5129-5133.	11.1	255

#	Article	IF	CITATIONS
127	Asymmetric morphology from an organic/organometallic block copolymer. Polymer, 2010, 51, 4663-4666.	1.8	11
128	Optoelectronics using block copolymers. Materials Today, 2010, 13, 42-51.	8.3	140
129	Nanopatterning of ultrananocrystalline diamond thin films via block copolymer lithography. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 979-983.	0.9	8
130	Block Copolymer Nanostructures for Technology. Polymers, 2010, 2, 470-489.	2.0	129
131	Crossover behavior in the hydrogen sensing mechanism for palladium ultrathin films. Nanotechnology, 2010, 21, 125501.	1.3	58
132	Minimizing Lateral Domain Collapse in Etched Poly(3-hexylthiophene)- <i>block</i> -Polylactide Thin Films for Improved Optoelectronic Performance. Langmuir, 2010, 26, 8756-8761.	1.6	43
133	Electrolyte Effects on Electron Transport and Recombination at ZnO Nanorods for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 17880-17888.	1.5	78
134	Self-Assembly of Cylinder-Forming Block Copolymers on Ultrananocrystalline Diamond (UNCD) Thin Films for Lithographic Applications. Materials Research Society Symposia Proceedings, 2009, 1203, 1.	0.1	0
135	Rational Design of Nanostructured Hybrid Materials for Photovoltaics. Materials Research Society Symposia Proceedings, 2009, 1190, 81.	0.1	2
136	Improved Hybrid Solar Cells via in situ UV Polymerization. Small, 2009, 5, 1776-1783.	5.2	105
137	Importance of Side Chains and Backbone Length in Defect Modeling of Poly(3-alkylthiophenes). Journal of Physical Chemistry B, 2009, 113, 6215-6218.	1.2	105
138	Self-Assembly of Poly(3-hexylthiophene)-block-polylactide Block Copolymer and Subsequent Incorporation of Electron Acceptor Material. Macromolecules, 2009, 42, 8211-8217.	2.2	135
139	Modifying metal–polymer nanostructures using UV exposure. Soft Matter, 2009, 5, 1683.	1.2	13
140	Thickness dependent hierarchical meso/nano scale morphologies of a metal-containing block copolymer thin film induced by hybrid annealing and their pattern transfer abilities. Soft Matter, 2009, 5, 4665.	1.2	31
141	Simple orientational control over cylindrical organic–inorganic block copolymer domains for etch mask applications. Thin Solid Films, 2009, 517, 4474-4478.	0.8	40
142	Block copolymers for photovoltaics. Energy and Environmental Science, 2009, 2, 1266.	15.6	232
143	The role of metal nanoparticles and nanonetworks in alloy degradation. Nature Materials, 2008, 7, 641-646.	13.3	30
144	Isolating the Effect of Torsional Defects on Mobility and Band Gap in Conjugated Polymers. Journal of Physical Chemistry B, 2008, 112, 8891-8895.	1.2	70

#	Article	IF	CITATIONS
145	Tuning metal surface diffusion on diblock copolymer films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 1048-1051.	0.9	18
146	Mechanism for hierarchical self-assembly of nanoparticles on scaffolds derived from block copolymers. Surface Science, 2007, 601, 2555-2561.	0.8	37
147	Directing the self-assembly of block copolymers. Progress in Polymer Science, 2007, 32, 1152-1204.	11.8	945
148	A Materials Chemistry Perspective on Nanomagnetism. ChemInform, 2006, 37, no.	0.1	1
149	A materials chemistry perspective on nanomagnetism. Journal of Materials Chemistry, 2005, 15, 4189.	6.7	130
150	Self-Organization of FePt Nanoparticles on Photochemically Modified Diblock Copolymer Templates. Advanced Materials, 2005, 17, 2446-2450.	11.1	157
151	Self-Assembly of Magnetic and Semiconductiong Nanoparticles on Modified Diblock Copolymer Templates. Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	0
152	Advanced photon source 2004 users meeting and Workshops. Synchrotron Radiation News, 2004, 17, 2-12.	0.2	0
153	Surface vibrations in alkanethiol self-assembled monolayers of varying chain length. Journal of Chemical Physics, 2004, 120, 3880-3886.	1.2	27
154	Guiding Polymers to Perfection:Â Macroscopic Alignment of Nanoscale Domains. Nano Letters, 2004, 4, 273-276.	4.5	293
155	Hierarchical Assembly and Compliance of Aligned Nanoscale Polymer Cylinders in Confinement. Langmuir, 2004, 20, 5091-5099.	1.6	167
156	In search of nanoperfection: Experiment and Monte Carlo simulation of nucleation-controlled step doubling. Journal of Applied Physics, 2002, 91, 10081.	1.1	1
157	Coexistence of the (23 × â^š3) Au(111) Reconstruction and a Striped Phase Self-Assembled Monolayer. Langmuir, 2002, 18, 7462-7468.	1.6	40
158	Influence of oxygen dissolution history on reconstruction behavior of a stepped metal surface. Chemical Physics Letters, 2002, 364, 284-289.	1.2	5
159	Surface vibrations of a highly ordered low-density alkanethiol monolayer measured using inelastic helium atom scattering. Surface Science, 2001, 478, L313-L319.	0.8	23
160	Step-modified phase diagram of chemisorbed oxygen on nickel. Surface Science, 2001, 491, 140-148.	0.8	14
161	Influence of steps on the interaction between adsorbed hydrogen atoms and a nickel surface. Journal of Chemical Physics, 1999, 111, 9053-9057.	1.2	19
162	Rational Design of Interfacial Structure:  Adsorbate-Mediated Templating. Journal of Physical Chemistry B, 1999, 103, 9805-9808.	1.2	4