
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5010402/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Theoretical studies of atmospheric reaction mechanisms in the troposphere. Chemical Society Reviews, 2012, 41, 6259.	18.7	360
2	Water Catalysis of a Radical-Molecule Gas-Phase Reaction. Science, 2007, 315, 497-501.	6.0	299
3	Rational Design of Flexible Two-Dimensional MXenes with Multiple Functionalities. Chemical Reviews, 2019, 119, 11980-12031.	23.0	242
4	Promising electron mobility and high thermal conductivity in Sc ₂ CT ₂ (T = F,) Tj ETQqO	0 0 rgBT /0 2 .8	Overlock 10 T

5	Kinetics and Mechanisms of Aqueous Ozone Reactions with Bromide, Sulfite, Hydrogen Sulfite, Iodide, and Nitrite Ions. Inorganic Chemistry, 2001, 40, 4436-4442.	1.9	187
6	Radicalâ 'Water Complexes in Earth's Atmosphere. Accounts of Chemical Research, 2000, 33, 825-830.	7.6	178
7	The thermal and electrical properties of the promising semiconductor MXene Hf2CO2. Scientific Reports, 2016, 6, 27971.	1.6	178
8	Single Iridium Atom Doped Ni ₂ P Catalyst for Optimal Oxygen Evolution. Journal of the American Chemical Society, 2021, 143, 13605-13615.	6.6	162
9	Existence of a Hydroperoxy and Water (HO2·H2O) Radical Complex. Journal of Physical Chemistry A, 1998, 102, 1899-1902.	1.1	155
10	In Situ Observation of the pH Gradient near the Gas Diffusion Electrode of CO ₂ Reduction in Alkaline Electrolyte. Journal of the American Chemical Society, 2020, 142, 15438-15444.	6.6	154
11	Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice. Nature, 2020, 577, 60-63.	13.7	149
12	Molecular reactions at aqueous interfaces. Nature Reviews Chemistry, 2020, 4, 459-475.	13.8	149
13	Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide. Physical Review B, 2016, 94, .	1.1	142
14	Intrinsic Structural, Electrical, Thermal, and Mechanical Properties of the Promising Conductor Mo ₂ C MXene. Journal of Physical Chemistry C, 2016, 120, 15082-15088.	1.5	139
15	Rational Design of Highly Stable and Active MXeneâ€Based Bifunctional ORR/OER Doubleâ€Atom Catalysts. Advanced Materials, 2021, 33, e2102595.	11.1	137
16	Distinct ice patterns on solid surfaces with various wettabilities. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11285-11290.	3.3	132
17	Integrating Rh Species with NiFe-Layered Double Hydroxide for Overall Water Splitting. Nano Letters, 2020, 20, 136-144.	4.5	129
18	Sulfuric Acid as Autocatalyst in the Formation of Sulfuric Acid. Journal of the American Chemical Society, 2012, 134, 20632-20644.	6.6	126

#	Article	lF	CITATIONS
19	Water effects on atmospheric reactions. International Reviews in Physical Chemistry, 2011, 30, 335-369.	0.9	119
20	The <i>trans</i> -HOCO radical: Quartic force fields, vibrational frequencies, and spectroscopic constants. Journal of Chemical Physics, 2011, 135, 134301.	1.2	116
21	New Mechanistic Pathways for Criegee–Water Chemistry at the Air/Water Interface. Journal of the American Chemical Society, 2016, 138, 11164-11169.	6.6	111
22	HOCO Radical Chemistry. Accounts of Chemical Research, 2010, 43, 1519-1526.	7.6	109
23	Quartic force field predictions of the fundamental vibrational frequencies and spectroscopic constants of the cations HOCO+ and DOCO+. Journal of Chemical Physics, 2012, 136, 234309.	1.2	105
24	Experimental Evidence for the Existence of the HO2â^'H2O Complex. Journal of Physical Chemistry A, 2000, 104, 6597-6601.	1.1	104
25	Atmospheric Significance of Water Clusters and Ozone–Water Complexes. Journal of Physical Chemistry A, 2013, 117, 10381-10396.	1.1	101
26	Insight into Chemistry on Cloud/Aerosol Water Surfaces. Accounts of Chemical Research, 2018, 51, 1229-1237.	7.6	96
27	Coupled Cluster Theory Determination of the Heats of Formation of Combustion-Related Compounds:Â CO, HCO, CO2, HCO2, HOCO, HC(O)OH, and HC(O)OOH. Journal of Physical Chemistry A, 2003, 107, 1604-1617.	1.1	94
28	An Investigation of the Factors Influencing Student Performance in Physical Chemistry. Journal of Chemical Education, 2001, 78, 99.	1.1	93
29	Near-Barrierless Ammonium Bisulfate Formation via a Loop-Structure Promoted Proton-Transfer Mechanism on the Surface of Water. Journal of the American Chemical Society, 2016, 138, 1816-1819.	6.6	93
30	Impact of Water on the OH + HOCl Reaction. Journal of the American Chemical Society, 2011, 133, 3345-3353.	6.6	92
31	The Isomerization of Methoxy Radical: Intramolecular Hydrogen Atom Transfer Mediated through Acid Catalysis. Journal of the American Chemical Society, 2011, 133, 2013-2015.	6.6	91
32	Effects of a Single Water Molecule on the OH + H ₂ O ₂ Reaction. Journal of Physical Chemistry A, 2012, 116, 5821-5829.	1.1	91
33	Interconnection of Reactive Oxygen Species Chemistry across the Interfaces of Atmospheric, Environmental, and Biological Processes. Accounts of Chemical Research, 2015, 48, 575-583.	7.6	90
34	Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12946-12951.	3.3	87
35	Self-Catalytic Reaction of SO ₃ and NH ₃ To Produce Sulfamic Acid and Its Implication to Atmospheric Particle Formation. Journal of the American Chemical Society, 2018, 140, 11020-11028.	6.6	86
36	Effect of Irradiation Sources and Oxygen Concentration on the Photocatalytic Oxidation of 2-Propanol and Acetone Studied by in Situ FTIR. Journal of Physical Chemistry B, 2003, 107, 4537-4544.	1.2	84

#	Article	IF	CITATIONS
37	Multielemental single–atom-thick <i>A</i> layers in nanolaminated V ₂ (Sn, <i>A</i>) C () Tj ETQc Sciences of the United States of America, 2020, 117, 820-825.	1 1 0.784 3.3	-314 rgBT (○ 84
38	Structure, Anharmonic Vibrational Frequencies, and Intensities of NNHNN ⁺ . Journal of Physical Chemistry A, 2015, 119, 11623-11631.	1.1	81
39	Surprising Stability of Larger Criegee Intermediates on Aqueous Interfaces. Angewandte Chemie - International Edition, 2017, 56, 7740-7744.	7.2	80
40	Gas Phase Hydrolysis of Formaldehyde To Form Methanediol: Impact of Formic Acid Catalysis. Journal of Physical Chemistry A, 2013, 117, 11704-11710.	1.1	73
41	Ion-specific ice recrystallization provides a facile approach for the fabrication of porous materials. Nature Communications, 2017, 8, 15154.	5.8	71
42	Fundamental Vibrational Frequencies and Spectroscopic Constants of HOCS ⁺ , HSCO ⁺ , and Isotopologues via Quartic Force Fields. Journal of Physical Chemistry A, 2012, 116, 9582-9590.	1.1	70
43	Reactivity of Atmospherically Relevant Small Radicals at the Air–Water Interface. Angewandte Chemie - International Edition, 2012, 51, 5413-5417.	7.2	69
44	Role of Double Hydrogen Atom Transfer Reactions in Atmospheric Chemistry. Accounts of Chemical Research, 2016, 49, 877-883.	7.6	69
45	The OH radical-H2O molecular interaction potential. Journal of Chemical Physics, 2006, 124, 224318.	1.2	67
46	Formation of HONO from the NH ₃ -promoted hydrolysis of NO ₂ dimers in the atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7236-7241.	3.3	67
47	Bond Dissociation Energies in Second-Row Compounds. Journal of Physical Chemistry A, 2008, 112, 3145-3156.	1.1	66
48	Reactivity of Volatile Organic Compounds at the Surface of a Water Droplet. Journal of the American Chemical Society, 2012, 134, 11821-11827.	6.6	65
49	Assessing Student Understanding of General Chemistry with Concept Mapping. Journal of Chemical Education, 2002, 79, 248.	1.1	64
50	Hydrolysis of Glyoxal in Water-Restricted Environments: Formation of Organic Aerosol Precursors through Formic Acid Catalysis. Journal of Physical Chemistry A, 2014, 118, 4095-4105.	1.1	63
51	Mechanistic Study of the Cas-Phase Decomposition of Methyl Formate. Journal of the American Chemical Society, 2003, 125, 10475-10480.	6.6	62
52	Vibrational frequencies and spectroscopic constants from quartic force fields for <i>cis</i> -HOCO: The radical and the anion. Journal of Chemical Physics, 2011, 135, 214303.	1.2	62
53	Encapsulation kinetics and dynamics of carbon monoxide in clathrate hydrate. Nature Communications, 2014, 5, 4128.	5.8	62
54	Kinetics and Mechanism of the Acetylperoxy + HO2 Reaction. Journal of Physical Chemistry A, 1999, 103, 365-378.	1.1	60

#	Article	IF	CITATIONS
55	Exploring the OH+CO→H+CO2 potential surface via dissociative photodetachment of (HOCO)Ⱂ. Journal of Chemical Physics, 2002, 117, 6478-6488.	1.2	60
56	A surface-stabilized ozonide triggers bromide oxidation at the aqueous solution-vapour interface. Nature Communications, 2017, 8, 700.	5.8	59
57	Infrared Spectrum and Stability of the H ₂ Oâ^'HO Complex: Experiment and Theory. Journal of Physical Chemistry A, 2010, 114, 1529-1538.	1.1	58
58	Spectroscopic signatures of ozone at the air–water interface and photochemistry implications. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11618-11623.	3.3	58
59	General-Acid-Catalyzed Reactions of Hypochlorous Acid and Acetyl Hypochlorite with Chlorite Ion. Inorganic Chemistry, 2000, 39, 2614-2620.	1.9	56
60	The importance of weak absorption features in promoting tropospheric radical production. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7449-7452.	3.3	56
61	Water desalination through rim functionalized carbon nanotubes. Journal of Materials Chemistry A, 2019, 7, 3583-3591.	5.2	56
62	Unraveling the mechanism of selective ion transport in hydrophobic subnanometer channels. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10851-10856.	3.3	53
63	Reaction of Criegee Intermediate with Nitric Acid at the Air–Water Interface. Journal of the American Chemical Society, 2018, 140, 4913-4921.	6.6	53
64	Heats of Formation of the H1,2OmSn (m, n = 0â^3) Molecules from Electronic Structure Calculations. Journal of Physical Chemistry A, 2009, 113, 11343-11353.	1.1	52
65	Interaction of the NH ₂ Radical with the Surface of a Water Droplet. Journal of the American Chemical Society, 2015, 137, 12070-12078.	6.6	52
66	Integrating Multiple Teaching Methods into a General Chemistry Classroom. Journal of Chemical Education, 1998, 75, 210.	1.1	51
67	Designing flexible 2D transition metal carbides with strain-controllable lithium storage. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E11082-E11091.	3.3	51
68	Nitric Acid–Amine Chemistry in the Gas Phase and at the Air–Water Interface. Journal of the American Chemical Society, 2018, 140, 6456-6466.	6.6	51
69	Existence of a Chlorine Oxide and Water (ClO.cntdot.H2O) Radical Complex. Journal of the American Chemical Society, 1995, 117, 9917-9918.	6.6	50
70	Making Sure That Hydrofluorocarbons Are "Ozone Friendly― Accounts of Chemical Research, 1996, 29, 391-397.	7.6	50
71	Photochemistry of oxidized Hg(I) and Hg(II) species suggests missing mercury oxidation in the troposphere. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30949-30956.	3.3	50
72	Cavity Ringdown Spectroscopy of cis-cis HOONO and the HOONO/HONO2 Branching Ratio in the Reaction OH + NO2 + M. Journal of Physical Chemistry A, 2003, 107, 6974-6985.	1.1	48

#	Article	IF	CITATIONS
73	Hydrolysis of Ketene Catalyzed by Formic Acid: Modification of Reaction Mechanism, Energetics, and Kinetics with Organic Acid Catalysis. Journal of Physical Chemistry A, 2015, 119, 4347-4357.	1.1	48
74	Structure and Energetics of Hydrogen Bonded HOxâ^'HNO3Complexes. Journal of Physical Chemistry A, 1999, 103, 6049-6053.	1.1	47
75	Uptake of the HO2radical by water: Molecular dynamics calculations and their implications for atmospheric modeling. Journal of Geophysical Research, 2004, 109, .	3.3	46
76	Interaction of SO ₂ with the Surface of a Water Nanodroplet. Journal of the American Chemical Society, 2017, 139, 17168-17174.	6.6	46
77	Mechanistic Insights into Fast Charging and Discharging of the Sodium Metal Battery Anode: A Comparison with Lithium. Journal of the American Chemical Society, 2021, 143, 13929-13936.	6.6	46
78	The Formation of a Surprisingly Stable HO2â^'H2SO4Complex. Journal of the American Chemical Society, 2001, 123, 10387-10388.	6.6	45
79	Photodissociation Mechanisms of Major Mercury(II) Species in the Atmospheric Chemical Cycle of Mercury. Angewandte Chemie - International Edition, 2020, 59, 7605-7610.	7.2	45
80	Identifying the Molecular Origin of Global Warming. Journal of Physical Chemistry A, 2009, 113, 12694-12699.	1.1	44
81	Spontaneous Formation of One-Dimensional Hydrogen Gas Hydrate in Carbon Nanotubes. Journal of the American Chemical Society, 2014, 136, 10661-10668.	6.6	44
82	Pressure dependence and metastable state formation in the photolysis of dichlorine monoxide (Cl2O). Journal of Chemical Physics, 1996, 104, 2857-2868.	1.2	43
83	An Investigation of the Value of Using Concept Maps in General Chemistry. Journal of Chemical Education, 2001, 78, 1111.	1.1	43
84	The Gas-Phase Decomposition of CF ₃ OH with Water: A Radical-Catalyzed Mechanism. Journal of Physical Chemistry A, 2009, 113, 5333-5337.	1.1	43
85	Carboxylic Acid Catalyzed Hydration of Acetaldehyde. Journal of Physical Chemistry A, 2015, 119, 4581-4588.	1.1	43
86	TiO2 Photocatalytic Degradation of Dichloromethane:  An FTIR and Solid-State NMR Study. Journal of Physical Chemistry B, 2004, 108, 5640-5646.	1.2	42
87	Communication: Spectroscopic consequences of proton delocalization in OCHCO+. Journal of Chemical Physics, 2015, 143, 071102.	1.2	42
88	Evidence of low-density and high-density liquid phases and isochore end point for water confined to carbon nanotube. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4066-4071.	3.3	42
89	Photochemistry of SO ₂ at the Air–Water Interface: A Source of OH and HOSO Radicals. Journal of the American Chemical Society, 2018, 140, 12341-12344.	6.6	42
90	Single Atomâ€Modified Hybrid Transition Metal Carbides as Efficient Hydrogen Evolution Reaction Catalysts. Advanced Functional Materials, 2021, 31, 2104285.	7.8	42

#	Article	IF	CITATIONS
91	A spectroscopic case for SPSi detection: The third-row in a single molecule. Journal of Chemical Physics, 2016, 145, 124311.	1.2	41
92	Dimethylamine Addition to Formaldehyde Catalyzed by a Single Water Molecule: A Facile Route for Atmospheric Carbinolamine Formation and Potential Promoter of Aerosol Growth. Journal of Physical Chemistry A, 2016, 120, 1358-1368.	1.1	41
93	Gasâ€Phase Generation and Decomposition of a Sulfinylnitrene into the Iminyl Radical OSN. Angewandte Chemie - International Edition, 2016, 55, 1507-1510.	7.2	40
94	Gas-Phase Photolysis of Hg(I) Radical Species: A New Atmospheric Mercury Reduction Process. Journal of the American Chemical Society, 2019, 141, 8698-8702.	6.6	40
95	Criegee intermediate-hydrogen sulfide chemistry at the air/water interface. Chemical Science, 2017, 8, 5385-5391.	3.7	39
96	Parent Thioketene Sâ€Oxide H ₂ CCSO: Gasâ€Phase Generation, Structure, and Bonding Analysis. Chemistry - A European Journal, 2017, 23, 16566-16573.	1.7	39
97	A New Mechanism of Acid Rain Generation from HOSO at the Air–Water Interface. Journal of the American Chemical Society, 2019, 141, 16564-16568.	6.6	39
98	A gas-to-particle conversion mechanism helps to explain atmospheric particle formation through clustering of iodine oxides. Nature Communications, 2020, 11, 4521.	5.8	39
99	Dissociation Pathways of Peroxyacetyl Nitrate (PAN). Journal of Physical Chemistry A, 1999, 103, 11451-11459.	1.1	38
100	The gas and solution phase acidities of HNO, HOONO, HONO, and HONO2. International Journal of Mass Spectrometry, 2003, 227, 421-438.	0.7	38
101	Controlling states of water droplets on nanostructured surfaces by design. Nanoscale, 2017, 9, 18240-18245.	2.8	38
102	Interfaces Select Specific Stereochemical Conformations: The Isomerization of Glyoxal at the Liquid Water Interface. Journal of the American Chemical Society, 2017, 139, 27-30.	6.6	38
103	Atmospheric Spectroscopy and Photochemistry at Environmental Water Interfaces. Annual Review of Physical Chemistry, 2019, 70, 45-69.	4.8	38
104	Photoinduced Oxidation Reactions at the Air–Water Interface. Journal of the American Chemical Society, 2020, 142, 16140-16155.	6.6	38
105	Reaction pathways for gas-phase hydrolysis of formyl compounds HXCO (X = H, F, and Cl). Journal of the American Chemical Society, 1993, 115, 3746-3751.	6.6	37
106	Unimolecular Decomposition Pathways of Dimethyl Ether:  An ab Initio Study. Journal of Physical Chemistry A, 1998, 102, 236-241.	1.1	36
107	Crystal structure and encapsulation dynamics of ice II-structured neon hydrate. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10456-10461.	3.3	36
108	On the Detectability of the HSS, HSO, and HOS Radicals in the Interstellar Medium. Astrophysical Journal, 2017, 835, 243.	1.6	36

#	Article	IF	CITATIONS
109	Unraveling a New Chemical Mechanism of Missing Sulfate Formation in Aerosol Haze: Gaseous NO ₂ with Aqueous HSO ₃ [–] /SO ₃ ^{2–} . Journal of the American Chemical Society, 2019, 141, 19312-19320.	6.6	36
110	High levelab initiostudies on the excited states of HOCO radical. Journal of Chemical Physics, 2000, 113, 7963-7970.	1.2	35
111	Ab Initio Study of Hydrogen Migration in 1-Alkylperoxy Radicals. Journal of Physical Chemistry A, 2010, 114, 11492-11505.	1.1	34
112	Hydrogen bonding and orientation effects on the accommodation of methylamine at the air-water interface. Journal of Chemical Physics, 2016, 144, 214701.	1.2	34
113	Simplest <i>N</i> -Sulfonylamine HNSO ₂ . Journal of the American Chemical Society, 2016, 138, 11509-11512.	6.6	34
114	Ab Initio Study of the Structure, Binding Energy, and Vibrations of the HOCl-H2O Complex. The Journal of Physical Chemistry, 1995, 99, 1919-1922.	2.9	33
115	Water Complexation as a Means of Stabilizing the Metastable HO3Radical. Journal of the American Chemical Society, 1999, 121, 8592-8596.	6.6	33
116	Surface Electrochemical Stability and Strainâ€Tunable Lithium Storage of Highly Flexible 2D Transition Metal Carbides. Advanced Functional Materials, 2018, 28, 1804867.	7.8	33
117	Direct observation of 2-dimensional ices on different surfaces near room temperature without confinement. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16723-16728.	3.3	33
118	Reactivity Trends within Alkoxy Radical Reactions Responsible for Chain Branching. Journal of the American Chemical Society, 2011, 133, 18208-18219.	6.6	32
119	A Computational Study Investigating the Energetics and Kinetics of the HNCO + (CH ₃) ₂ NH Reaction Catalyzed by a Single Water Molecule. Journal of Physical Chemistry A, 2017, 121, 8465-8473.	1.1	32
120	Unexpected quenching effect on new particle formation from the atmospheric reaction of methanol with SO ₃ . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24966-24971.	3.3	32
121	Ground and electronically excited states of methyl hydroperoxide: Comparison with hydrogen peroxide. Journal of Chemical Physics, 2006, 125, 104301.	1.2	31
122	Elemental sulfur aerosol-forming mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 864-869.	3.3	31
123	Molecular structure, vibrational frequencies, and energetics of the HOCO+ ion. Journal of Chemical Physics, 1997, 107, 9039-9045.	1.2	30
124	High levelab initiomolecular orbital theory study of the structure, vibrational spectrum, stability, and low-lying excited states of HOONO. Journal of Chemical Physics, 2000, 113, 7976-7981.	1.2	30
125	Accurateab initiostudy of the energetics of phosphorus nitride: Heat of formation, ionization potential, and electron affinity. Journal of Chemical Physics, 2003, 118, 8290-8295.	1.2	30
126	Temperature-Dependent Rate Coefficients for the Reaction of CH2OO with Hydrogen Sulfide. Journal of Physical Chemistry A, 2017, 121, 938-945.	1.1	30

#	Article	IF	CITATIONS
127	Mechanistic Insight into the Reaction of Organic Acids with SO ₃ at the Air–Water Interface. Angewandte Chemie - International Edition, 2019, 58, 8351-8355.	7.2	30
128	Two-dimensional semiconducting Lu ₂ CT ₂ (T = F, OH) MXene with low work function and high carrier mobility. Nanoscale, 2020, 12, 3795-3802.	2.8	30
129	Structure and Vibrational Spectra of Chlorofluorocarbon Substitutes:  An Experimental and ab Initio Study of Fluorinated Ethers CHF2OCF3 (E125), CHF2OCHF2 (E134), and CH3OCF3 (E143A). Journal of Physical Chemistry A, 1998, 102, 1854-1864.	1.1	29
130	Complexes of Hydroperoxyl Radical with Glyoxal, Methylglyoxal, Methylvinyl Ketone, Acrolein, and Methacrolein:  Possible New Sinks for HO2 in the Atmosphere?. Journal of Physical Chemistry A, 2003, 107, 2492-2496.	1.1	29
131	High-level ab initio studies of the structure, vibrational spectra, and energetics of S3. Journal of Chemical Physics, 2005, 123, 054302.	1.2	29
132	Complete active space self-consistent field and multireference configuration interaction studies of the differences between the low-lying excited states of HO2 and HO2–H2O. Journal of Chemical Physics, 1999, 110, 9017-9019.	1.2	28
133	The atmospheric oxidation of CH ₃ OOH by the OH radical: the effect of water vapor. Physical Chemistry Chemical Physics, 2017, 19, 12331-12342.	1.3	28
134	Mechanistic Quantification of Thermodynamic Stability and Mechanical Strength for Two-Dimensional Transition-Metal Carbides. Journal of Physical Chemistry C, 2018, 122, 4710-4722.	1.5	28
135	Revealing the Intrinsic Atomic Structure and Chemistry of Amorphous LiO ₂ -Containing Products in Li–O ₂ Batteries Using Cryogenic Electron Microscopy. Journal of the American Chemical Society, 2022, 144, 2129-2136.	6.6	28
136	A CASSCF–MRCI study on the low-lying excited states of CH3OCl. Journal of Chemical Physics, 1999, 111, 8384-8388.	1.2	27
137	A molecular perspective for global modeling of upper atmospheric NH ₃ from freezing clouds. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6147-6152.	3.3	27
138	Triplet state promoted reaction of SO ₂ with H ₂ O by competition between proton coupled electron transfer (pcet) and hydrogen atom transfer (hat) processes. Physical Chemistry Chemical Physics, 2019, 21, 9779-9784.	1.3	27
139	First-Principles Molecular Dynamics Simulations of the Spontaneous Freezing Transition of 2D Water in a Nanoslit. Journal of the American Chemical Society, 2021, 143, 8177-8183.	6.6	27
140	High level ab initio molecular orbital study of the structures and vibrational spectra of CHBr+ and CBr+. Journal of Chemical Physics, 1998, 109, 134-138.	1.2	26
141	The Impact of Continuous Instructional Development on Graduate and Undergraduate Students. Journal of Chemical Education, 1999, 76, 114.	1.1	26
142	Heteroatom Tuning of Bimolecular Criegee Reactions and Its Implications. Angewandte Chemie - International Edition, 2016, 55, 13432-13435.	7.2	26
143	Elucidating the molecular mechanisms of Criegee-amine chemistry in the gas phase andÂaqueous surface environments. Chemical Science, 2019, 10, 743-751.	3.7	26
144	Hydration, Solvation, and Isomerization of Methylglyoxal at the Air/Water Interface: New Mechanistic Pathways. Journal of the American Chemical Society, 2020, 142, 5574-5582.	6.6	26

#	Article	IF	CITATIONS
145	Structures, Vibrational Spectra, and Relative Energetics of HBrO3 Isomers. Journal of Physical Chemistry A, 1998, 102, 2072-2079.	1.1	25
146	Anab initiostudy of the competing reaction channels in the reaction of HOCO radicals with NO and O2. Journal of Chemical Physics, 2004, 120, 5073-5080.	1.2	25
147	Identifying Cytosine-Specific Isomers via High-Accuracy Single Photon Ionization. Journal of the American Chemical Society, 2016, 138, 16596-16599.	6.6	25
148	Ion pair particles at the air–water interface. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12401-12406.	3.3	25
149	Is AIOH the Astrochemical Reservoir Molecule of AIO?: Insights from Excited Electronic States. Astrophysical Journal, 2018, 863, 139.	1.6	25
150	Spectroscopic investigation of [Al,N,C,O] refractory molecules. Journal of Chemical Physics, 2019, 151, 244303.	1.2	25
151	Water transport through subnanopores in the ultimate size limit: Mechanism from molecular dynamics. Nano Research, 2019, 12, 587-592.	5.8	25
152	Turning a Superhydrophilic Surface Weakly Hydrophilic: Topological Wetting States. Journal of the American Chemical Society, 2020, 142, 18491-18502.	6.6	25
153	Dissociation dynamics of FC(O)O and ClC(O)O radicals. Chemical Physics, 1988, 127, 73-79.	0.9	24
154	Theoretical Study of the Thermal Decomposition Pathways of 2-H Heptafluoropropane. Journal of Physical Chemistry A, 2002, 106, 3106-3113.	1.1	24
155	Anab initiostudy of the pathways for the reaction between CH3O2 and BrO radicals. Journal of Chemical Physics, 2003, 118, 1779-1793.	1.2	24
156	ClClO2 Is the Most Stable Isomer of Cl2O2. Accurate Coupled Cluster Energetics and Electronic Spectra of Cl2O2 Isomers. Journal of Physical Chemistry A, 2008, 112, 9623-9627.	1.1	24
157	Thermodynamic Properties of the Isomers of [HNOS], [HNO ₂ S], and [HNOS ₂] and the Role of the Central Sulfur. Chemistry - A European Journal, 2014, 20, 10231-10235.	1.7	24
158	The Role of Catalysis in Alkanediol Decomposition: Implications for General Detection of Alkanediols and Their Formation in the Atmosphere. Journal of Physical Chemistry A, 2015, 119, 9821-9833.	1.1	24
159	The Stability of αâ€Hydroperoxyalkyl Radicals. Chemistry - A European Journal, 2016, 22, 18092-18100.	1.7	24
160	Single-Molecule Catalysis Revealed: Elucidating the Mechanistic Framework for the Formation and Growth of Atmospheric Iodine Oxide Aerosols in Gas-Phase and Aqueous Surface Environments. Journal of the American Chemical Society, 2018, 140, 14704-14716.	6.6	24
161	Evidence of the Elusive Gold-Induced Non-classical Hydrogen Bonding in Aqueous Environments. Journal of the American Chemical Society, 2020, 142, 6001-6006.	6.6	24
162	Theoretical spectroscopic investigations of HNSq and HSNq (q = 0, +1, â^1) in the gas phase. Journal of Chemical Physics, 2014, 140, 244309.	1.2	23

#	Article	lF	CITATIONS
163	Tuning the Stereoselectivity and Solvation Selectivity at Interfacial and Bulk Environments by Changing Solvent Polarity: Isomerization of Glyoxal in Different Solvent Environments. Journal of the American Chemical Society, 2018, 140, 5535-5543.	6.6	23
164	Capture of the Sulfur Monoxide–Hydroxyl Radical Complex. Journal of the American Chemical Society, 2020, 142, 2175-2179.	6.6	23
165	The vibrational spectrum of FC(O)O radical: A challenging case for singleâ€reference electron correlation methods. Journal of Chemical Physics, 1995, 103, 6601-6607.	1.2	22
166	Should bromoform absorb at wavelengths longer than 300 nm?. Journal of Chemical Physics, 2002, 117, 6103-6107.	1.2	22
167	Atmospheric oxidation pathways of propane and its byâ€products: Acetone, acetaldehyde, and propionaldehyde. Journal of Geophysical Research, 2007, 112, .	3.3	22
168	Atmospheric Oxidation Mechanism of Hydroxymethyl Hydroperoxide. Journal of Physical Chemistry A, 2009, 113, 7593-7600.	1.1	22
169	Experimental Observation of the 16â€Electron Molecules SPN, SNP, and Cyclic PSN. Angewandte Chemie - International Edition, 2012, 51, 3334-3339.	7.2	22
170	Rapid sulfuric acid–dimethylamine nucleation enhanced by nitric acid in polluted regions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	22
171	A Density Functional Study of the H2Oâ^'HOCO Complex. Journal of Physical Chemistry A, 2000, 104, 404-407.	1.1	21
172	Protonated nitrous acid (H2ONO+): Molecular structure, vibrational frequencies, and proton affinity. Journal of Chemical Physics, 2001, 115, 2117-2122.	1.2	21
173	HOSO2â^'H2O Radical Complex and Its Possible Effects on the Production of Sulfuric Acid in the Atmosphere. Journal of Physical Chemistry A, 2003, 107, 1216-1221.	1.1	21
174	Competition of Charge- versus Radical-Directed Fragmentation of Gas-Phase Protonated Cysteine Sulfinyl Radicals. Journal of the American Chemical Society, 2013, 135, 6226-6233.	6.6	21
175	Red-Light-Induced Decomposition of an Organic Peroxy Radical: Aâ€New Source of the HO2Radical. Angewandte Chemie - International Edition, 2015, 54, 15711-15714.	7.2	21
176	Electronic structures and mechanical properties of Al(111)/ZrB ₂ (0001) heterojunctions from first-principles calculation. Molecular Physics, 2015, 113, 1794-1801.	0.8	21
177	Quartic force field-derived vibrational frequencies and spectroscopic constants for the isomeric pair SNO and OSN and isotopologues. Journal of Chemical Physics, 2015, 143, 084308.	1.2	21
178	Formation of CO ₂ Hydrates within Single-Walled Carbon Nanotubes at Ambient Pressure: CO ₂ Capture and Selective Separation of a CO ₂ /H ₂ Mixture in Water. Journal of Physical Chemistry C, 2018, 122, 7951-7958.	1.5	21
179	Reconciling the Debate on the Existence of Pentazole HN ₅ in the Pentazolate Salt of (N ₅) ₆ (H ₃ 0) ₃ (NH ₄) ₄ Cl. Journal of the American Chemical Society, 2019, 141, 2984-2989.	6.6	21
180	Theoretical Investigation of Product Channels in the CH3O2+ Br Reaction. Journal of Physical Chemistry A, 2006, 110, 3778-3784.	1.1	20

#	Article	IF	CITATIONS
181	Quantum force molecular dynamics study of the reaction of O atoms with HOCO. Journal of Chemical Physics, 2007, 127, 094302.	1.2	20
182	Interaction of ClO Radical with Liquid Water. Journal of the American Chemical Society, 2009, 131, 14778-14785.	6.6	20
183	On the role of the simplest S-nitrosothiol, HSNO, in atmospheric and biological processes. Journal of Chemical Physics, 2013, 139, 234304.	1.2	20
184	CO Separation from H ₂ via Hydrate Formation in Single-Walled Carbon Nanotubes. Journal of Physical Chemistry Letters, 2016, 7, 4911-4915.	2.1	20
185	Room temperature electrofreezing of water yields a missing dense ice phase in the phase diagram. Nature Communications, 2019, 10, 1925.	5.8	20
186	Kinetics of the Reaction between Cyclopentylperoxy Radicals and HO2. Journal of Physical Chemistry A, 1997, 101, 5337-5343.	1.1	19
187	CASSCF and MRCI studies of the electronic excited states of CH2Cl and CH2Br. Journal of Chemical Physics, 2001, 114, 2879-2882.	1.2	19
188	<i>Ab initio</i> structural and spectroscopic study of HPSx and HSPx (x = 0,+1,â^'1) in the gas phase. Journal of Chemical Physics, 2013, 139, 174313.	1.2	19
189	A Singlet Thiophosphoryl Nitrene and Its Interconversion with Thiazyl and Thionitroso Isomers. Journal of the American Chemical Society, 2015, 137, 10942-10945.	6.6	19
190	Organic Acid Formation from the Atmospheric Oxidation of Gem Diols: Reaction Mechanism, Energetics, and Rates. Journal of Physical Chemistry A, 2018, 122, 6266-6276.	1.1	19
191	Mechanistic study of the photoexcitation, photoconversion, and photodissociation of CS2. Journal of Chemical Physics, 2018, 149, 064304.	1.2	19
192	Mechanism for Rapid Conversion of Amines to Ammonium Salts at the Air–Particle Interface. Journal of the American Chemical Society, 2021, 143, 1171-1178.	6.6	19
193	High level ab initio molecular orbital study of the structures and vibrational spectra of CH2Br and CH2Br+. Journal of Chemical Physics, 1999, 110, 817-822.	1.2	18
194	An ab initio study of the structures and energetics of CH3OCl and CH3ClO. International Journal of Quantum Chemistry, 1999, 73, 29-35.	1.0	18
195	Complete active space self-consistent field and multireference configuration interaction studies of the low-lying excited states of the ClO–H2O radical complex. Journal of Chemical Physics, 2001, 115, 8381-8383.	1.2	18
196	Design strategies to minimize the radiative efficiency of global warming molecules. Proceedings of the United States of America, 2010, 107, 9049-9054.	3.3	18
197	Excited states of OH-(H2O)n clusters for n = 1–4: An <i>ab initio</i> study. Journal of Chemical Physics, 2014, 141, 104315.	1.2	18
198	Phenylsulfinyl Radical: Gas-Phase Generation, Photoisomerization, and Oxidation. Journal of the American Chemical Society, 2018, 140, 9972-9978.	6.6	18

#	Article	IF	CITATIONS
199	Effects of Different Surface Functionalization and Doping on the Electronic Transport Properties of M ₂ CT <i>_x</i> –M ₂ CO ₂ Heterojunction Devices. Journal of Physical Chemistry C, 2018, 122, 14908-14917.	1.5	18
200	Wavelength-Dependent Photolysis ofn-Butyraldehyde andi-Butyraldehyde in the 280â^'330-nm Region. Journal of Physical Chemistry A, 2002, 106, 7755-7763.	1.1	17
201	Bimolecular reaction of molecular oxygen with overtone excited HOOH: Implications for recycling HO2 in the atmosphere. Physical Chemistry Chemical Physics, 2003, 5, 3183.	1.3	17
202	Electronic states, conical intersections, and spin-rovibronic spectroscopy of the nitrogen oxide sulfide radical. Journal of Chemical Physics, 2013, 138, 104318.	1.2	17
203	Formation of bilayer clathrate hydrates. Journal of Materials Chemistry A, 2015, 3, 5547-5555.	5.2	17
204	Heterocumulene Sulfinyl Radical OCNSO. Angewandte Chemie - International Edition, 2017, 56, 2140-2144.	7.2	17
205	Oxygenate-Induced Tuning of Aldehyde-Amine Reactivity and Its Atmospheric Implications. Journal of Physical Chemistry A, 2017, 121, 1022-1031.	1.1	17
206	Two-step reaction mechanism reveals new antioxidant capability of cysteine disulfides against hydroxyl radical attack. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18216-18223.	3.3	17
207	The Aqueous Surface as an Efficient Transient Stop for the Reactivity of Gaseous NO ₂ in Liquid Water. Journal of the American Chemical Society, 2020, 142, 20937-20941.	6.6	17
208	Computational Prediction of Novel Ice Phases: A Perspective. Journal of Physical Chemistry Letters, 2020, 11, 7449-7461.	2.1	17
209	Photosensitization mechanisms at the air–water interface of aqueous aerosols. Chemical Science, 2022, 13, 2624-2631.	3.7	17
210	SPECTROSCOPIC CONSTANTS OF THE X ¹ Σ ⁺ AND 1 ³ ΠSTATES OF AlO ⁺ . Astrophysical Journal, 2016, 826, 163.	1.6	16
211	Hydrogen Sulfide as a Scavenger of Sulfur Atomic Cation. Journal of Physical Chemistry A, 2018, 122, 4983-4987.	1.1	16
212	An ultralow-density porous ice with the largest internal cavity identified in the water phase diagram. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12684-12691.	3.3	16
213	Caged Nitric Oxide–Thiyl Radical Pairs. Journal of the American Chemical Society, 2019, 141, 3361-3365.	6.6	16
214	Photochemistry and Non-adiabatic Photodynamics of the HOSO Radical. Journal of the American Chemical Society, 2021, 143, 10836-10841.	6.6	16
215	Ab Initio Characterization of the Structure, Vibrational, and Energetic Properties of Br-·HOCl, Cl-·HOBr, and Br-·HOBr Anionic Complexes. Journal of Physical Chemistry A, 2001, 105, 494-500.	1.1	15
216	Spectroscopic identification and stability of the intermediate in the OH + HONO2 reaction. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12678-12683.	3.3	15

#	Article	IF	CITATIONS
217	Structures and heats of formation of the neutral and ionic PNO, NOP, and NPO systems from electronic structure calculations. Journal of Chemical Physics, 2008, 128, 164305.	1.2	15
218	Theoretical Study of the Reaction of CH ₃ with HOCO Radicals. Journal of Physical Chemistry A, 2009, 113, 3844-3849.	1.1	15
219	A Mass Spectrometric Approach for Probing the Stability of Bioorganic Radicals. Angewandte Chemie - International Edition, 2014, 53, 1887-1890.	7.2	15
220	The Methylsulfonyloxyl Radical, CH ₃ SO ₃ . Angewandte Chemie - International Edition, 2015, 54, 11404-11408.	7.2	15
221	The Trifluoromethyl Sulfinyl and Oxathiyl Radicals. Chemistry - A European Journal, 2018, 24, 1505-1508.	1.7	15
222	Role of Water on the Rotational Dynamics of the Organic Methylammonium Cation: A First Principles Analysis. Scientific Reports, 2019, 9, 668.	1.6	15
223	The influence of iodine on the Antarctic stratospheric ozone hole. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	15
224	Accurate ab initio spectroscopic and thermodynamic properties of BBrx and HBBrx (x=0, +1, â^'1). Journal of Chemical Physics, 2001, 115, 7513-7521.	1.2	14
225	Protonation of Water Clusters Induced by Hydroperoxyl Radical Surface Adsorption. Chemistry - A European Journal, 2011, 17, 5076-5085.	1.7	14
226	Accurate theoretical study of PSq (q = 0,+1,â^'1) in the gas phase. Journal of Chemical Physics, 2012, 136, 244309.	1.2	14
227	Vibrational memory in quantum localized states. Physical Review A, 2016, 93, .	1.0	14
228	Quantum Chemical Rovibrational Analysis of the HOSO Radical. Journal of Physical Chemistry A, 2017, 121, 8108-8114.	1.1	14
229	Reactions of Criegee Intermediates with Non-Water Greenhouse Gases: Implications for Metal Free Chemical Fixation of Carbon Dioxide. Journal of Physical Chemistry Letters, 2017, 8, 4206-4213.	2.1	14
230	Can Urea Be a Seed for Aerosol Particle Formation in Air?. Journal of Physical Chemistry A, 2018, 122, 3261-3269.	1.1	14
231	Theoretical Investigation of the Photoexcited NO ₂ +H ₂ O reaction at the Air–Water Interface and Its Atmospheric Implications. Chemistry - A European Journal, 2019, 25, 13899-13904.	1.7	14
232	Reactivity of Undissociated Molecular Nitric Acid at the Air–Water Interface. Journal of the American Chemical Society, 2021, 143, 453-462.	6.6	14
233	Evaluating the accuracy of density functional methods for ClOO. Journal of Chemical Physics, 1996, 104, 5345-5346.	1.2	13
234	Energetics, structure, and rovibrational spectroscopic properties of the sulfurous anions SNOâ^' and OSNâ^'. Journal of Chemical Physics, 2015, 143, 184301.	1.2	13

#	Article	IF	CITATIONS
235	Role of Proton Tunneling and Metal-Free Organocatalysis in the Decomposition of Methanediol: A Theoretical Study. Journal of Physical Chemistry A, 2017, 121, 4318-4325.	1.1	13
236	Phase behaviors of deeply supercooled bilayer water unseen in bulk water. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4839-4844.	3.3	13
237	How We Can Rebuild Trust in Science—And Why We Must. Angewandte Chemie - International Edition, 2018, 57, 13696-13697.	7.2	13
238	Production of hydrogen peroxide enabled by microdroplets. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19222-19224.	3.3	13
239	Photochemistry of HOSO radical in the gas phase. Journal of Chemical Physics, 2019, 151, 111103.	1.2	13
240	Two-Dimensional Carbonitride MXenes as an Efficient Electrocatalyst for Hydrogen Evolution. Journal of Physical Chemistry C, 2021, 125, 4477-4488.	1.5	13
241	Density-Functional Study of the Equilibrium Structures, Vibrational Spectra, and Energetics of CH3OBr and CH3BrO. Journal of Physical Chemistry A, 1998, 102, 9970-9974.	1.1	12
242	On the Mechanism of the BrO + CH2O Reaction. Journal of Physical Chemistry A, 1999, 103, 8543-8546.	1.1	12
243	Side-On versus End-On Bonding of O2 to the FSO3 Radical: Matrix Isolation and Abâ€Initio Study of FSO5. Angewandte Chemie - International Edition, 2007, 46, 3754-3757.	7.2	12
244	Electronic structure of NSOâ^' and SNOâ^' anions: Stability, electron affinity, and spectroscopic properties. Journal of Chemical Physics, 2015, 143, 164301.	1.2	12
245	Quantum Chemical Analysis of the CO–HNN ⁺ Proton-Bound Complex. Journal of Physical Chemistry A, 2016, 120, 7745-7752.	1.1	12
246	Binding of the atomic cations hydrogen through argon to water and hydrogen sulfide. Physical Chemistry Chemical Physics, 2018, 20, 25967-25973.	1.3	12
247	Anharmonic Frequencies and Spectroscopic Constants of OAlOH and AlOH: Strong Bonding but Unhindered Motion. Journal of Physical Chemistry A, 2020, 124, 8834-8841.	1.1	12
248	Neutron Diffraction Study of Significant <i>sp</i> ³ and <i>sp</i> ² C–H Bond Shortening in a Fluorinated Pyridinium Saccharinate. Journal of the American Chemical Society, 2021, 143, 5550-5557.	6.6	12
249	Two-dimensional monolayer salt nanostructures can spontaneously aggregate rather than dissolve in dilute aqueous solutions. Nature Communications, 2021, 12, 5602.	5.8	12
250	Generation and Release of OH Radicals from the Reaction of H ₂ O with O ₂ over Soot. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
251	An improved estimate of the heat of formation of FOOCI. Journal of Chemical Physics, 1996, 105, 3338-3339.	1.2	11
252	A Density Functional Study of the Equilibrium Structure, Vibrational Spectrum, and Heat of Formation of Br2O3. Journal of Physical Chemistry A, 1998, 102, 6702-6705.	1.1	11

#	Article	IF	CITATIONS
253	Potential energy surface for the hydroperoxy and water (HO2·H2O) radical complex. Molecular Physics, 2002, 100, 247-253.	0.8	11
254	Ab initio and analytical intermolecular potential for ClO–H2O. Journal of Chemical Physics, 2007, 126, 114304.	1.2	11
255	Production of singlet oxygen atoms by photodissociation of oxywater. Journal of Chemical Physics, 2009, 130, 084304.	1.2	11
256	International Scientific Collaborations: A Key to Scientific Success. Angewandte Chemie - International Edition, 2015, 54, 14984-14985.	7.2	11
257	Characterization and reactivity of the weakly bound complexes of the [H, N, S]â^' anionic system with astrophysical and biological implications. Journal of Chemical Physics, 2015, 143, 034303.	1.2	11
258	Gasâ€Phase Generation and Decomposition of a Sulfinylnitrene into the Iminyl Radical OSN. Angewandte Chemie, 2016, 128, 1529-1532.	1.6	11
259	HNS+ and HSN+ cations: Electronic states, spin-rovibronic spectroscopy with planetary and biological implications. Journal of Chemical Physics, 2016, 145, 084307.	1.2	11
260	Full-Dimensional Theory of Pair-Correlated HNCO Photofragmentation. Journal of Physical Chemistry Letters, 2017, 8, 2420-2424.	2.1	11
261	Impacts of cloud water droplets on the OH production rate from peroxide photolysis. Physical Chemistry Chemical Physics, 2017, 19, 31621-31627.	1.3	11
262	A possible unaccounted source of atmospheric sulfate formation: amine-promoted hydrolysis and non-radical oxidation of sulfur dioxide. Chemical Science, 2020, 11, 2093-2102.	3.7	11
263	A coupled-cluster study of the HOBr→HBrO transition state. Journal of Chemical Physics, 1999, 111, 5780-5782.	1.2	10
264	Low-lying excited states of HO[sub 2]–HONO, HO[sub 2]–HONO[sub 2], and HO[sub 2]–HO[sub 2]NO[sub 2] complexes. Journal of Chemical Physics, 2001, 114, 211.	1.2	10
265	Excited states and photodissociation of hydroxymethyl hydroperoxide. Journal of Chemical Physics, 2008, 128, 174304.	1.2	10
266	How Does the Central Atom Substitution Impact the Properties of a Criegee Intermediate? Insights from Multireference Calculations. Journal of the American Chemical Society, 2017, 139, 15446-15449.	6.6	10
267	Spectroscopy and Stability of AlOP: A Possible Progenitor of Interstellar Metal. Journal of Physical Chemistry A, 2019, 123, 463-470.	1.1	10
268	Adsorption Behaviors and Phase Equilibria for Clathrate Hydrates of Sulfur- and Nitrogen-Containing Small Molecules. Journal of Physical Chemistry C, 2019, 123, 2691-2702.	1.5	10
269	The Triplet Hydroxyl Radical Complex of Phosphorus Monoxide. Angewandte Chemie - International Edition, 2020, 59, 21949-21953.	7.2	10
270	Photochemistry of HOSO ₂ and SO ₃ and Implications for the Production of Sulfuric Acid. Journal of the American Chemical Society, 2021, 143, 18794-18802.	6.6	10

#	Article	IF	CITATIONS
271	Internal rotational barriers of ClOOCI. Journal of Chemical Physics, 1995, 103, 8921-8923.	1.2	9
272	Reactivity of hydropersulfides toward the hydroxyl radical unraveled: disulfide bond cleavage, hydrogen atom transfer, and proton-coupled electron transfer. Physical Chemistry Chemical Physics, 2018, 20, 4793-4804.	1.3	9
273	Photoinduced Sulfur–Nitrogen Bond Rotation and Thermal Nitrogen Inversion in Heterocumulene OSNSO. Journal of the American Chemical Society, 2018, 140, 1231-1234.	6.6	9
274	A synergetic stabilization and strengthening strategy for two-dimensional ordered hybrid transition metal carbides. Physical Chemistry Chemical Physics, 2018, 20, 29684-29692.	1.3	9
275	Mechanistic Insight into the Reaction of Organic Acids with SO ₃ at the Air–Water Interface. Angewandte Chemie, 2019, 131, 8439-8443.	1.6	9
276	Multiple Stable Isoprene–Ozone Complexes Reveal Complex Entrance Channel Dynamics in the Isoprene + Ozone Reaction. Journal of the American Chemical Society, 2020, 142, 10806-10813.	6.6	9
277	Tight electrostatic regulation of the OH production rate from the photolysis of hydrogen peroxide adsorbed on surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
278	Mechanistic Study of the Aqueous Reaction of Organic Peroxides with HSO ₃ ^{â^'} on the Surface of a Water Droplet. Angewandte Chemie - International Edition, 2021, 60, 20200-20203.	7.2	9
279	Low-lying excited states of HOOOCI and HOOOBr. Journal of Chemical Physics, 2000, 112, 8483-8486.	1.2	8
280	Proton Affinity of Peroxyacetic Acidâ€. Journal of Physical Chemistry A, 2004, 108, 2930-2935.	1.1	8
281	Sulfur atom exchange in the reaction of SH radicals with S atoms. Journal of Chemical Physics, 2007, 126, 214301.	1.2	8
282	On the role of HNS and HSN as light-sensitive NO-donors for delivery in biological media. Journal of Chemical Physics, 2015, 143, 134301.	1.2	8
283	Red-Light Initiated Decomposition of α-Hydroxy Methylperoxy Radical in the Presence of Organic and Inorganic Acids: Implications for the HO _{<i>x</i>} Formation in the Lower Stratosphere. Journal of Physical Chemistry A, 2016, 120, 2677-2683.	1.1	8
284	Phonon-mediated stabilization and softening of 2D transition metal carbides: case studies of Ti ₂ CO ₂ and Mo ₂ CO ₂ . Physical Chemistry Chemical Physics, 2018, 20, 14608-14618.	1.3	8
285	Unraveling Molecular Mechanism on Dilute Surfactant Solution Controlled Ice Recrystallization. Langmuir, 2020, 36, 1691-1698.	1.6	8
286	New Insights into the Stability of Anhydrous 2 <i>H</i> -Imidazolium Fluoride and its High Dissolution Capability toward a Strongly Hydrogen-Bonded Compound. Journal of the American Chemical Society, 2020, 142, 10314-10318.	6.6	8
287	HIO _{<i>x</i>} –IONO ₂ Dynamics at the Air–Water Interface: Revealing the Existence of a Halogen Bond at the Atmospheric Aerosol Surface. Journal of the American Chemical Society, 2020, 142, 12467-12477.	6.6	8
288	Heterogeneous Reactions of SO3 on Ice: An Overlooked Sink for SO3 Depletion. Journal of the American Chemical Society, 2020, 142, 2150-2154.	6.6	8

#	Article	IF	CITATIONS
289	High-level Ab Initio Studies of the Spectroscopic Properties of Triatomic [Al, S, O] ^x (x = 0,) Tj ETQq1	1 0.7843 1.6	14 ₈ rgBT /Ove
290	Spectroscopic Characterization of HSO ₂ [•] and HOSO [•] Intermediates Involved in SO ₂ Geoengineering. Journal of Physical Chemistry A, 2021, 125, 10615-10621.	1.1	8
291	Reaction of SO ₃ with HONO ₂ and Implications for Sulfur Partitioning in the Atmosphere. Journal of the American Chemical Society, 2022, 144, 9172-9177.	6.6	8
292	Deprotonation energy of HO2: Basis set limit energies. Journal of Chemical Physics, 2001, 115, 6373-6375.	1.2	7
293	Coupled cluster study of the energetic and spectroscopic properties of OPOx (x=O,+1,â^1). Journal of Chemical Physics, 2002, 117, 3190-3195.	1.2	7
294	Theoretical study of the spectroscopically relevant parameters for the detection of HNPq and HPNq (q = 0, +1, â^'1) in the gas phase. Journal of Chemical Physics, 2012, 136, 244311.	1.2	7
295	Molecularly Tuning the Radicaloid N–H···O╀ Hydrogen Bond. Journal of Physical Chemistry A, 2016, 120, 1307-1315.	1.1	7
296	Surprising Stability of Larger Criegee Intermediates on Aqueous Interfaces. Angewandte Chemie, 2017, 129, 7848-7852.	1.6	7
297	H–X (X = H, CH3, CH2F, CHF2, CF3, and SiH3) Bond Activation by Criegee Intermediates: A Theoretical Perspective. Journal of Physical Chemistry A, 2017, 121, 9421-9428.	1.1	7
298	Substituent effects on the spectroscopic properties of Criegee intermediates. Journal of Chemical Physics, 2017, 147, 164303.	1.2	7
299	A Possible Progenitor of the Interstellar Sulfide Bond: Rovibrational Characterization of the Hydrogen Disulfide Cation HSSH ⁺ . Astrophysical Journal, 2018, 856, 30.	1.6	7
300	Photochemistry of OPN: Formation of Cyclic PON and Reversible Combination with Carbon Monoxide. Chemistry - A European Journal, 2018, 24, 14627-14630.	1.7	7
301	Spectroscopy and characterization of AlNX (X = O and S): Triatomic circumstellar molecules. Journal of Chemical Physics, 2019, 150, 124306.	1.2	7
302	Molecular Interaction and Orientation of HOCl on Aqueous and Ice Surfaces. Journal of the American Chemical Society, 2020, 142, 17329-17333.	6.6	7
303	Spectroscopic characterization of two peroxyl radicals during the O2-oxidation of the methylthio radical. Communications Chemistry, 2022, 5, .	2.0	7
304	Solvation and Hydrolysis Reaction of Isocyanic Acid at the Air–Water Interface: A Computational Study. Journal of the American Chemical Society, 2022, 144, 5315-5322.	6.6	7
305	Changing the Product State Distribution and Kinetics in Photocatalytic Surface Reactions Using Pulsed Laser Irradiation. Journal of the American Chemical Society, 1998, 120, 8265-8266.	6.6	6
306	Post-Hartree–Fock study on FOCl+ and FClO+. Journal of Chemical Physics, 1998, 108, 659-663.	1.2	6

#	Article	IF	CITATIONS
307	Heterogeneous Degradation of Carbon Tetrachloride:Â Breaking the Carbonâ^ Chlorine Bond with Activated Carbon Surfaces. Environmental Science & Technology, 1999, 33, 4102-4106.	4.6	6
308	Activation of Dioxygen by Halocarbon Ions. Journal of Physical Chemistry A, 2000, 104, 6804-6808.	1.1	6
309	A complete active space self-consistent field multiconfiguration reference configuration interaction study of the potential energy curves of the ground and excited states of CCl. Journal of Chemical Physics, 2001, 114, 2192-2196.	1.2	6
310	A group increment scheme for infrared absorption intensities of greenhouse gases. Journal of Molecular Structure, 2012, 1009, 89-95.	1.8	6
311	Hydrogen Sulfide Induced Carbon Dioxide Activation by Metalâ€Free Dual Catalysis. Chemistry - A European Journal, 2016, 22, 4359-4363.	1.7	6
312	Toward the laboratory identification of [O,N,S,S] isomers: Implications for biological NO chemistry. Journal of Chemical Physics, 2016, 144, 234316.	1.2	6
313	A Coupled Cluster Investigation of SNO Radical Isomers and Their Reactions with Hydrogen Atom: Insight into Structures, Conformers, Barriers, and Energetics. Journal of Physical Chemistry A, 2017, 121, 6652-6659.	1.1	6
314	Identification of Key Intermediates during the NO and H ₂ S Crosstalk Signaling Pathways. Journal of Physical Chemistry A, 2018, 122, 2877-2883.	1.1	6
315	Electronic and spectroscopic characterizations of SNP isomers. Journal of Chemical Physics, 2018, 148, 054305.	1.2	6
316	Two-dimensional dry ices with rich polymorphic and polyamorphic phase behavior. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10263-10268.	3.3	6
317	Molecular oxygen generation from the reaction of water cations with oxygen atoms. Journal of Chemical Physics, 2019, 150, 201103.	1.2	6
318	Molecular insights into organic particulate formation. Communications Chemistry, 2019, 2, .	2.0	6
319	Microscopic Insight into Water Desalination through Nanoporous Graphene: The Influence of the Dipole Moment. Journal of Physical Chemistry Letters, 2022, 13, 4029-4035.	2.1	6
320	Universal Principle for Large-Scale Production of a High-Quality Two-Dimensional Monolayer via Positive Charge-Driven Exfoliation. Journal of Physical Chemistry Letters, 2022, 13, 6597-6603.	2.1	6
321	Communication: Theoretical prediction of the structure and spectroscopic properties of the \$ilde{mathrm{X}}\$Xif and \$ilde{mathrm{A}}\$Aif states of hydroxymethyl peroxy (HOCH2OO) radical. Journal of Chemical Physics, 2013, 138, 021105.	1.2	5
322	An <i>ab initio</i> investigation of the ground and low-lying singlet and triplet electronic states of XNO2 and XONO (X = Cl, Br, and I). Journal of Chemical Physics, 2014, 140, 044308.	1.2	5
323	<i>Ab initio</i> ro-vibronic spectroscopy of the Î2 PCS radical and α+1PCSâ^ anion. Journal of Chemical Physics, 2016, 145, 224303.	1.2	5
324	Gasâ€Phase Unimolecular Dissociation Reveals Dominant Base Property of Protonated Homocysteine Sulfinyl Radical Ions. Chemistry - A European Journal, 2016, 22, 934-940.	1.7	5

#	Article	IF	CITATIONS
325	Heterocumulene Sulfinyl Radical OCNSO. Angewandte Chemie, 2017, 129, 2172-2176.	1.6	5
326	Benchmark study of the structural and spectroscopic parameters of the hydroxymethyl peroxy (HOCH2OO) radical and its decomposition reaction to HO2 and H2CO. Journal of Chemical Physics, 2017, 146, 144303.	1.2	5
327	Toward the laboratory identification of the not-so-simple NS2 neutral and anion isomers. Journal of Chemical Physics, 2017, 147, 074303.	1.2	5
328	Climate Metrics for C1–C4 Hydrofluorocarbons (HFCs). Journal of Physical Chemistry A, 2020, 124, 4793-4800.	1.1	5
329	Rapid Allylic 1,6 H-Atom Transfer in an Unsaturated Criegee Intermediate. Journal of the American Chemical Society, 2022, 144, 5945-5955.	6.6	5
330	Carbon Atom-Initiated Degradation of Carbon Tetrachloride in the Presence of Molecular Oxygen:Â A Product and Mechanistic Study. Environmental Science & Technology, 1998, 32, 3200-3206.	4.6	4
331	Ab initio study of the electronic spectrum of peroxyacetyl nitrate. Journal of Chemical Physics, 2004, 121, 6298-6301.	1.2	4
332	Dimerization and trapping of diazirinyl radicals. Physical Chemistry Chemical Physics, 2004, 6, 756.	1.3	4
333	Ab initio study of the structure, bonding, vibrational spectra, and energetics of XBS+ (where X=H, F,) Tj ETQq1	1 0.784314 1.2	l rg ₄ βT /Overlo
334	Redâ€Lightâ€Induced Decomposition of an Organic Peroxy Radical: Aâ€New Source of the HO 2 Radical. Angewandte Chemie, 2015, 127, 15937-15940.	1.6	4
335	Analytic <i>ab initio</i> -based molecular interaction potential for the BrOâ‹H2O complex. Journal of Chemical Physics, 2016, 144, 204121.	1.2	4
336	Thermodynamics and Kinetics for the Free Radical Oxygen Protein Oxidation Pathway in a Model for β-Structured Peptides. Journal of Physical Chemistry A, 2016, 120, 2493-2503.	1.1	4
337	Resolving the HONO formation mechanism in the ionosphere via ab initio molecular dynamic simulations. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4629-4633.	3.3	4
338	Energetic Properties and Electronic Structure of [Si,N,S] and [Si,P,S] Isomers. Journal of Physical Chemistry A, 2016, 120, 1691-1697.	1.1	4
339	Thioaldehydes from Aldehyde–Hydrogen Sulfide Interaction Under Organocatalysis. Chemistry - A European Journal, 2017, 23, 2522-2526.	1.7	4
340	Intramolecular hydrogen bonding in malonaldehyde and its radical analogues. Journal of Chemical Physics, 2017, 147, 124309.	1.2	4
341	Accurate spectroscopic characterization of the HOC(O)O radical: A route toward its experimental identification. Journal of Chemical Physics, 2017, 147, 024302.	1.2	4

#	Article	IF	CITATIONS
343	Designing Flexible Quantum Spin Hall Insulators through 2D Ordered Hybrid Transition-Metal Carbides. Journal of Physical Chemistry C, 2019, 123, 20664-20674.	1.5	4
344	Photodissociation Mechanisms of Major Mercury(II) Species in the Atmospheric Chemical Cycle of Mercury. Angewandte Chemie, 2020, 132, 7675-7680.	1.6	4
345	Adsorption and isomerization of glyoxal and methylglyoxal at the air/hydroxylated silica surface. Journal of Chemical Physics, 2020, 152, 164702.	1.2	4
346	Spectroscopic Characterization of the First and Second Excited States of the HOSO Radical. Journal of Physical Chemistry A, 2021, 125, 6254-6262.	1.1	4
347	Dihalogenated Methylperoxy Radicals: Spectroscopic Characterization and Photodecomposition by Release of HO Chemistry - A European Journal, 2020, 26, 2817-2820.	1.7	4
348	Spectroscopic Properties Relevant to Astronomical and Laboratory Detection of MCH and MCH ⁺ (M = Al, Mg). Astrophysical Journal, 2022, 924, 139.	1.6	4
349	Uptake and hydration of sulfur dioxide on dry and wet hydroxylated silica surfaces: a computational study. Physical Chemistry Chemical Physics, 2021, 24, 172-179.	1.3	4
350	The Chemistry of Mercury in the Stratosphere. Geophysical Research Letters, 2022, 49, .	1.5	4
351	An ab initio calculation of the energetics for the FO+HCl→HOF+Cl reaction. Molecular Physics, 1994, 82, 831-833.	0.8	3
352	Ab initioprediction of the barrier height for abstraction of hydrogen from H2O2by ClO radical. Molecular Physics, 1995, 85, 1069-1071.	0.8	3
353	Ab initio studies on the low-lying excited states of ClO3 and BrO3. Journal of Chemical Physics, 2000, 112, 8866-8870.	1.2	3
354	Structure and vibrational spectra of bromine reservoir species from the atmospheric oxidations of bromoethane and bromopropane. Molecular Physics, 2008, 106, 299-314.	0.8	3
355	Heteroatom Tuning of Bimolecular Criegee Reactions and Its Implications. Angewandte Chemie, 2016, 128, 13630-13633.	1.6	3
356	Scholarly Integrity. Angewandte Chemie - International Edition, 2017, 56, 4070-4071.	7.2	3
357	Spectroscopic identification of the •SSNO isomers. Journal of Chemical Physics, 2020, 153, 094303.	1.2	3
358	Mechanisms of Acid-Promoted N ₂ and N ₂ O Generation from NH ₂ NO and NH ₂ NO ₂ . Journal of Physical Chemistry A, 2020, 124, 7575-7584.	1.1	3
359	Spectroscopic characterization of the first excited state and photochemistry of the HO3 radical. Journal of Chemical Physics, 2020, 152, 064304.	1.2	3
360	Multiple Wetting–Dewetting States of a Water Droplet on Dual-Scale Hierarchical Structured Surfaces. Jacs Au, 2021, 1, 955-966.	3.6	3

#	Article	IF	CITATIONS
361	Matrix-isolated trifluoromethylthiyl radical: sulfur atom transfer, isomerization and oxidation reactions. Chemical Communications, 2021, 57, 12143-12146.	2.2	3
362	Spectral Signatures of Hydrogen Thioperoxide (HOSH) and Hydrogen Persulfide (HSSH): Possible Molecular Sulfur Sinks in the Dense ISM. Molecules, 2022, 27, 3200.	1.7	3
363	The Photoionization Dynamics, Electronic Spectroscopy, and Excited State Photochemistry of AlCO and AlOC. Astrophysical Journal, 2022, 933, 192.	1.6	3
364	A CASSCF-MRCI study of the electronic excited states of FClO and FOCl. Journal of Chemical Physics, 1999, 110, 2404-2409.	1.2	2
365	Ab initio study of the electronic spectrum of the CH3OCH2 radical. Journal of Chemical Physics, 1999, 110, 4410-4412.	1.2	2
366	A coupled-cluster study of the mechanism for the CHF+H reaction. Journal of Chemical Physics, 1999, 111, 3457-3463.	1.2	2
367	CASSCF and MRCI studies on the electronic excited states of CHBrO, CClBrO, and CBr2O. Journal of Chemical Physics, 2000, 113, 1807-1812.	1.2	2
368	Chemistry in a Global Economy–An Education Agenda. Journal of Chemical Education, 2008, 85, 1338.	1.1	2
369	Internationale Kooperationen: ein Schlüssel zu wissenschaftlichem Erfolg. Angewandte Chemie, 2015, 127, 15196-15197.	1.6	2
370	Stereoisomers of hydroxymethanes: Probing structural and spectroscopic features upon substitution. Journal of Chemical Physics, 2016, 145, 244305.	1.2	2
371	Communication: Interaction of BrO radical with the surface of water. Journal of Chemical Physics, 2016, 145, 241102.	1.2	2
372	Wissenschaftliche Integritä Angewandte Chemie, 2017, 129, 4130-4132.	1.6	2
373	Criegee intermediate inside fullerene cage: Evidence for size-dependent reactivity. Journal of Chemical Physics, 2018, 148, 244301.	1.2	2
374	Wie wir das Vertrauen in die Wissenschaft wiederherstellen können – und warum dies unerlÃ s slich ist. Angewandte Chemie, 2018, 130, 13888-13890.	1.6	2
375	Rotational (de-)excitation of NS+(X1Σ+) by collision with He at low temperature. Monthly Notices of the Royal Astronomical Society, 2018, 480, 4259-4264.	1.6	2
376	Specific inter-domain interactions stabilize a compact HIV-1 Gag conformation. PLoS ONE, 2019, 14, e0221256.	1.1	2
377	Editorial: Securing Academic Freedom through Networks. Angewandte Chemie - International Edition, 2019, 58, 8246-8248.	7.2	2
378	Theoretical rovibrational characterization of HAINP: Weak bonding but strong intensities. Journal of Molecular Spectroscopy, 2021, 377, 111422.	0.4	2

#	Article	IF	CITATIONS
379	Astrochemical Significance of the P + SO Reaction: Spectroscopic Characterization of SPO, PSO, and SOP Isomers. Astrophysical Journal, 2021, 909, 122.	1.6	2
380	Mechanistic Study of the Aqueous Reaction of Organic Peroxides with HSO 3 â^' on the Surface of a Water Droplet. Angewandte Chemie, 2021, 133, 20362-20365.	1.6	2
381	Anharmonic fundamental vibrational frequencies and spectroscopic constants of the potential HSO2 radical astromolecule. Journal of Chemical Physics, 2021, 155, 114301.	1.2	2
382	Generation and Release of OH Radicals from the Reaction of H ₂ O with O ₂ over Soot. Angewandte Chemie, 0, , .	1.6	2
383	AlOSO: Spectroscopy and Structure of a New Group of Astrochemical Molecules. Astrophysical Journal, 2022, 930, 29.	1.6	2
384	Atmospheric Chemistry of Organic Halides. , 0, , 1559-1583.		1
385	A coupled-cluster study of the molecular structure, vibrational frequencies, and energetics of COBr+ and BrCO+ cations. Journal of Chemical Physics, 1999, 111, 3464-3467.	1.2	1
386	Coupled cluster study of the structure and vibrational spectrum of HC(O)O ⁺ . Molecular Physics, 1999, 96, 877-880.	0.8	1
387	Molecular structure, vibrational frequencies, energetics, and excited states of the HOONO+ ions. Journal of Chemical Physics, 2003, 118, 1721-1728.	1.2	1
388	Coupled-cluster studies of HOONO+: Additional conformers of the2A?ON+?OOH complex and a comparison of restricted and unrestricted open-shell Hartree-Fock coupled-cluster results. International Journal of Quantum Chemistry, 2004, 100, 764-770.	1.0	1
389	Back Cover: Reactivity of Atmospherically Relevant Small Radicals at the Air-Water Interface (Angew.) Tj ETQq1	0,78431	4 rgBT /Overld
390	Structure and spectroscopic properties of low-lying states of the HOC(O)O radical. Journal of Chemical Physics, 2016, 144, 084306.	1.2	1
391	Characterization of the electronic states of the biological relevant SSNO molecule. Journal of Chemical Physics, 2017, 146, 074301.	1.2	1
392	Toward the detection of the triatomic negative ion SPNâ^': Spectroscopy and potential energy surfaces. Journal of Chemical Physics, 2018, 148, 164305.	1.2	1
393	The Triplet Hydroxyl Radical Complex of Phosphorus Monoxide. Angewandte Chemie, 2020, 132, 22133-22137.	1.6	1
394	Energetic Properties, Spectroscopy, and Reactivity of NF3O. Journal of Physical Chemistry A, 2020, 124, 5237-5245.	1.1	1
395	Photochemistry from low-lying states of HOSO+. Journal of Chemical Physics, 2020, 152, 134302.	1.2	1
396	Photochemistry of NH2NO2 and implications for chemistry in the atmosphere. Journal of Chemical Physics, 2021, 154, 194301.	1.2	1

#	Article	IF	CITATIONS
397	Catalytic and autocatalytic chemical processes in the atmosphere. Annual Reports in Computational Chemistry, 2020, 16, 157-185.	0.9	1
398	Innentitelbild: Generation and Release of OH Radicals from the Reaction of H ₂ O with O ₂ over Soot (Angew. Chem. 21/2022). Angewandte Chemie, 2022, 134, .	1.6	1
399	The Future of U.S. Chemistry Research: Benchmarks and Challenges. Journal of Chemical Education, 2007, 84, 1089.	1.1	0
400	Frontispiece: The Methylsulfonyloxyl Radical, CH ₃ SO ₃ . Angewandte Chemie - International Edition, 2015, 54, .	7.2	0
401	Spectroscopic characterization of the ethyl radical-water complex. Journal of Chemical Physics, 2016, 145, 144301.	1.2	0
402	Energetic Properties and Electronic Structure of [C,N,O,P] and [C,N,S,P] Isomers. Journal of Physical Chemistry A, 2017, 121, 2180-2186.	1.1	0
403	Frontispiece: Surprising Stability of Larger Criegee Intermediates on Aqueous Interfaces. Angewandte Chemie - International Edition, 2017, 56, .	7.2	0
404	Innenrücktitelbild: Heterocumulene Sulfinyl Radical OCNSO (Angew. Chem. 8/2017). Angewandte Chemie, 2017, 129, 2253-2253.	1.6	0
405	Frontispiz: Surprising Stability of Larger Criegee Intermediates on Aqueous Interfaces. Angewandte Chemie, 2017, 129, .	1.6	0
406	Tribute to Veronica Vaida. Journal of Physical Chemistry A, 2018, 122, 1157-1158.	1.1	0
407	Spectroscopic Identification of H ₂ NSO and <i>syn</i> ―and <i>anti</i> â€HNSOH Radicals. Angewandte Chemie, 2018, 130, 7635-7639.	1.6	0
408	Editorial: Wissenschaftsfreiheit mithilfe von Netzwerken sichern. Angewandte Chemie, 2019, 131, 8332-8334.	1.6	0
409	Rücktitelbild: The Triplet Hydroxyl Radical Complex of Phosphorus Monoxide (Angew. Chem. 49/2020). Angewandte Chemie, 2020, 132, 22452-22452.	1.6	0