Fabrice Gouilleux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/501029/publications.pdf

Version: 2024-02-01

70 papers 3,433 citations

32 h-index 58 g-index

71 all docs

71 docs citations

times ranked

71

3855 citing authors

#	Article	IF	CITATIONS
1	Diphenyleneiodonium Triggers Cell Death of Acute Myeloid Leukemia Cells by Blocking the Mitochondrial Respiratory Chain, and Synergizes with Cytarabine. Cancers, 2022, 14, 2485.	1.7	2
2	Inhibitors Targeting STAT5 Signaling in Myeloid Leukemias: New Tetrahydroquinoline Derivatives with Improved Antileukemic Potential. ChemMedChem, 2021, 16, 1034-1046.	1.6	4
3	New Quinoxaline Derivatives as Dual Pim-1/2 Kinase Inhibitors: Design, Synthesis and Biological Evaluation. Molecules, 2021, 26, 867.	1.7	10
4	Characterization of NADPH Oxidase Expression and Activity in Acute Myeloid Leukemia Cell Lines: A Correlation with the Differentiation Status. Antioxidants, 2021, 10, 498.	2.2	10
5	Repurposing of Acriflavine to Target Chronic Myeloid Leukemia Treatment. Current Medicinal Chemistry, 2021, 28, 2218-2233.	1.2	19
6	Design, synthesis, and antiproliferative effect of 2,9â€bis[4â€(pyridinylalkylaminomethyl)phenyl]â€1,10â€phenanthroline derivatives on human leukemic cells by targeting Gâ€quadruplex. Archiv Der Pharmazie, 2021, 354, e2000450.	2.1	7
7	Dibenzofuran Derivatives Inspired from Cercosporamide as Dual Inhibitors of Pim and CLK1 Kinases. Molecules, 2021, 26, 6572.	1.7	3
8	Disruption of gap junctions attenuates acute myeloid leukemia chemoresistance induced by bone marrow mesenchymal stromal cells. Oncogene, 2020, 39, 1198-1212.	2.6	32
9	Acriflavine targets oncogenic STAT5 signaling in myeloid leukemia cells. Journal of Cellular and Molecular Medicine, 2020, 24, 10052-10062.	1.6	11
10	VAS3947 Induces UPR-Mediated Apoptosis through Cysteine Thiol Alkylation in AML Cell Lines. International Journal of Molecular Sciences, 2020, 21, 5470.	1.8	7
11	Horizontal meta-analysis identifies common deregulated genes across AML subgroups providing a robust prognostic signature. Blood Advances, 2020, 4, 5322-5335.	2.5	8
12	Pharmacological Inhibition of Oncogenic STAT3 and STAT5 Signaling in Hematopoietic Cancers. Cancers, 2020, 12, 240.	1.7	49
13	STAT5 is Expressed in CD34+/CD38â^' Stem Cells and Serves as a Potential Molecular Target in Ph-Negative Myeloproliferative Neoplasms. Cancers, 2020, 12, 1021.	1.7	12
14	A Novel Inhibitor of STAT5 Signaling Overcomes Chemotherapy Resistance in Myeloid Leukemia Cells. Cancers, 2019, 11, 2043.	1.7	15
15	Structure-based design of novel quinoxaline-2-carboxylic acids and analogues as Pim-1 inhibitors. European Journal of Medicinal Chemistry, 2018, 154, 101-109.	2.6	26
16	Carbenoxolone Decreases the Microenvironment-Induced Chemoresistance of Acute Myeloid Leukemia Cells. Blood, 2018, 132, 1474-1474.	0.6	0
17	O-GlcNAcylation of STAT5 controls tyrosine phosphorylation and oncogenic transcription in STAT5-dependent malignancies. Leukemia, 2017, 31, 2132-2142.	3.3	47
18	New Inhibitor Targeting Signal Transducer and Activator of Transcription 5 (STAT5) Signaling in Myeloid Leukemias. Journal of Medicinal Chemistry, 2017, 60, 6119-6136.	2.9	17

#	Article	IF	Citations
19	STAT5A/5B-specific expansion and transformation of hematopoietic stem cells. Blood Cancer Journal, 2017, 7, e514-e514.	2.8	6
20	Oncogenic STAT5 signaling promotes oxidative stress in chronic myeloid leukemia cells by repressing antioxidant defenses. Oncotarget, 2017, 8, 41876-41889.	0.8	33
21	Hepatic Deletion of Janus Kinase 2 Counteracts Oxidative Stress in Mice. Scientific Reports, 2016, 6, 34719.	1.6	24
22	Cyclin D1 unbalances the redox status controlling cell adhesion, migration, and drug resistance in myeloma cells. Oncotarget, 2016, 7, 45214-45224.	0.8	21
23	PAK-dependent STAT5 serine phosphorylation is required for BCR-ABL-induced leukemogenesis. Leukemia, 2014, 28, 629-641.	3.3	56
24	IL-2 Phosphorylates STAT5 To Drive IFN- \hat{l}^3 Production and Activation of Human Dendritic Cells. Journal of Immunology, 2014, 192, 5660-5670.	0.4	29
25	Oxidative metabolism in cancer. Jak-stat, 2013, 2, e25764.	2.2	44
26	Evidence for a protective role of the STAT5 transcription factor against oxidative stress in human leukemic pre-B cells. Leukemia, 2012, 26, 2390-2397.	3.3	25
27	Granulocyte-Colony-Stimulating Factor Stimulation of Bone Marrow Mesenchymal Stromal Cells Promotes CD34+ Cell Migration Via a Matrix Metalloproteinase-2-Dependent Mechanism. Stem Cells and Development, 2012, 21, 3162-3172.	1.1	35
28	Serine phosphorylation of the Stat5a C-terminus is a driving force for transformation. Frontiers in Bioscience - Landmark, 2011, 16, 3043.	3.0	10
29	The Tumor Suppressor hTid1 Inhibits STAT5b Activity via Functional Interaction. Journal of Biological Chemistry, 2011, 286, 5034-5042.	1.6	15
30	Stat5a serine 725 and 779 phosphorylation is a prerequisite for hematopoietic transformation. Blood, 2010, 116, 1548-1558.	0.6	56
31	Effective targeting of STAT5-mediated survival in myeloproliferative neoplasms using ABT-737 combined with rapamycin. Leukemia, 2010, 24, 1397-1405.	3.3	26
32	Implication of the calcium sensing receptor and the Phosphoinositide 3-kinase/Akt pathway in the extracellular calcium-mediated migration of RAW 264.7 osteoclast precursor cells. Bone, 2010, 46, 1416-1423.	1.4	49
33	Bone Marrow Mesenchymal Stromal Cells Regulate the Metabolism of H2O2 In Human Leukemic Cells Blood, 2010, 116, 1058-1058.	0.6	0
34	Extracellular Signal-Regulated Kinases 1 and 2 and TRPC1 Channels are Required for Calcium-Sensing Receptor-Stimulated MCF-7 Breast Cancer Cell Proliferation. Cellular Physiology and Biochemistry, 2009, 23, 335-346.	1.1	96
35	Expression of Activated STAT5 in Neoplastic Mast Cells in Systemic Mastocytosis. American Journal of Pathology, 2009, 175, 2416-2429.	1.9	72
36	Genetic and Pharmacologic Targeting of STAT5/Gab2/PI3K/mTOR Signaling in a Mouse Myeloproliferative Disease Model Blood, 2009, 114, 3902-3902.	0.6	1

#	Article	IF	Citations
37	Oncogenic Kit controls neoplastic mast cell growth through a Stat5/PI3-kinase signaling cascade. Blood, 2008, 112, 2463-2473.	0.6	97
38	The different functions of Stat5 and chromatin alteration through Stat5 proteins. Frontiers in Bioscience - Landmark, 2008, Volume, 6237.	3.0	39
39	Constitutive activation of Stat5 promotes its cytoplasmic localization and association with PI3-kinase in myeloid leukemias. Blood, 2007, 109, 1678-1686.	0.6	108
40	IGF-1 activates hEAG K+ channels through an Akt-dependent signaling pathway in breast cancer cells: Role in cell proliferation. Journal of Cellular Physiology, 2007, 212, 690-701.	2.0	62
41	Improved antitumoral properties of pure antiestrogen RU 58668-loaded liposomes in multiple myeloma. Journal of Steroid Biochemistry and Molecular Biology, 2006, 100, 67-78.	1.2	18
42	Activated STAT5 proteins induce activation of the PI 3-kinase/Akt and Ras/MAPK pathways via the Gab2 scaffolding adapter. Biochemical Journal, 2005, 390, 359-366.	1.7	99
43	4-Hydroxytamoxifen Inhibits Proliferation of Multiple Myeloma Cells In vitro through Down-Regulation of c-Myc, Up-Regulation of p27Kip1, and Modulation of Bcl-2 Family Members. Clinical Cancer Research, 2005, 11, 2345-2354.	3.2	35
44	Innovative drug delivery nanosystems improve the anti-tumor activity in vitro and in vivo of anti-estrogens in human breast cancer and multiple myeloma. Journal of Steroid Biochemistry and Molecular Biology, 2005, 94, 111-121.	1.2	49
45	ZAP-70 tyrosine kinase is constitutively expressed and phosphorylated in B-lineage acute lymphoblastic leukemia cells. Haematologica, 2005, 90, 899-905.	1.7	16
46	Interleukin-7 induces apoptosis of 697 pre-B cells expressing dominant-negative forms of STAT5: evidence for caspase-dependent and -independent mechanisms. Oncogene, 2004, 23, 3040-3047.	2.6	26
47	The Selective Estrogen Receptor Modulator 4-Hydroxy Tamoxifen Induces G1 Arrest and Apoptosis of Multiple Myeloma Cell Lines. Annals of the New York Academy of Sciences, 2003, 1010, 321-325.	1.8	11
48	TGF-β1 modulates Fas (APO-1/CD95)-mediated apoptosis of human pre-B cell lines. European Journal of Immunology, 2003, 33, 1372-1381.	1.6	19
49	Differential effect of dexamethasone on cell death and STAT5 activation during in vitro eosinopoiesis. British Journal of Haematology, 2003, 123, 933-941.	1.2	9
50	A Functional Polymorphism in a STAT5B Site of the Human PPARÎ ³ 3 Gene Promoter Affects Height and Lipid Metabolism in a French Population. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 289-294.	1.1	91
51	Erythropoietin, Thrombopoietin and Leptin Receptors. Growth Hormone, 2002, , 145-178.	0.2	1
52	Involvement of the NF-κB pathway in the transforming properties of the TEL-Jak2 leukemogenic fusion protein. FEBS Letters, 2001, 497, 148-152.	1.3	16
53	Regression of primary hepatocarcinoma in cancer-prone transgenic mice by local interferon- \hat{l}^3 delivery is associated with macrophages recruitment and nitric oxide production. Cancer Gene Therapy, 2001, 8, 193-202.	2.2	26
54	The TEL-Jak2 oncoprotein induces Socs1 expression and altered cytokine response in Ba/F3 cells. Oncogene, 2001, 20, 849-858.	2.6	35

#	Article	IF	CITATIONS
55	Constitutively active STAT5 variants induce growth and survival of hematopoietic cells through a Pl 3-kinase/Akt dependent pathway. Oncogene, 2001, 20, 2080-2090.	2.6	68
56	Cooperation between STAT5 and phosphatidylinositol 3-kinase in the IL-3-dependent survival of a bone marrow derived cell line. Oncogene, 2000, 19, 1164-1172.	2.6	58
57	IL-2 and long-term T cell activation induce physical and functional interaction between STAT5 and ETS transcription factors in human T cells. Oncogene, 2000, 19, 2086-2097.	2.6	43
58	Transforming properties of chimeric TEL-JAK proteins in Ba/F3 cells. Blood, 2000, 95, 2076-2083.	0.6	127
59	A Single Amino Acid in the DNA Binding Regions of STAT5A and STAT5B Confers Distinct DNA Binding Specificities. Journal of Biological Chemistry, 1998, 273, 33936-33941.	1.6	76
60	A Sequence of the CIS Gene Promoter Interacts Preferentially with Two Associated STAT5A Dimers: a Distinct Biochemical Difference between STAT5A and STAT5B. Molecular and Cellular Biology, 1998, 18, 5852-5860.	1.1	148
61	Activated Stat Related Transcription Factors in Acute Leukemia. Leukemia and Lymphoma, 1997, 28, 83-88.	0.6	51
62	Cytokine Receptor-independent, Constitutively Active Variants of STAT5. Journal of Biological Chemistry, 1997, 272, 30237-30243.	1.6	36
63	IL-10 induces DNA binding activity of three STAT proteins (Stat1, Stat3, and Stat5) and their distinct combinatorial assembly in the promoters of selected genes. FEBS Letters, 1996, 394, 365-370.	1.3	141
64	Functional interactions between Stat5 and the glucocorticoid receptor. Nature, 1996, 383, 726-728.	13.7	640
65	Mediation of Growth Hormone-dependent Transcriptional Activation by Mammary Gland Factor/Stat 5. Journal of Biological Chemistry, 1995, 270, 9448-9453.	1.6	156
66	Prolactin-mediated gene activation in mammary epithelial cells. Current Opinion in Genetics and Development, 1995, 5, 587-594.	1.5	112
67	Colony-stimulating factors and interferon- \hat{l}^3 activate a protein related to MGF-Stat 5 to cause formation of the differentiation-induced factor in myeloid cells. FEBS Letters, 1995, 360, 29-33.	1.3	42
68	Interaction with the nuclear matrix of a chimeric construct containing a replication origin and a transcription unit. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1992, 1171, 187-197.	2.4	12
69	Chromatin structure of hormono-dependent promoters. Journal of Steroid Biochemistry and Molecular Biology, 1991, 40, 325-332.	1.2	11
70	Cooperation between structural elements in hormonoregulated transcription from the mouse mammary tumor virus promoter. Nucleic Acids Research, 1991, 19, 1563-1569.	6.5	78