Masatsugu Tamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5009659/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of structural changes of brown rice by precise polishing on in vitro starch digestibility of cooked rice grain. Food Hydrocolloids for Health, 2022, 2, 100077.	1.6	3
2	Comparison of standard and non-standard buckwheat groats for cooking, physicochemical and nutritional properties, and in vitro starch digestibility. Future Foods, 2021, 3, 100029.	2.4	3
3	Cooking of short, medium and long-grain rice in limited and excess water: Effects on microstructural characteristics and gastro-small intestinal starch digestion in vitro. LWT - Food Science and Technology, 2021, 146, 111379.	2.5	14
4	Relationship between starch digestibility and physicochemical properties of aged rice grain. LWT - Food Science and Technology, 2021, 150, 111887.	2.5	6
5	Binders for Barley Dumplings. Engineering in Agriculture, Environment and Food, 2021, 14, 21-29.	0.2	2
6	Development of Dumpling Skin Rich in Barley Flour with Added Gluten. Engineering in Agriculture, Environment and Food, 2020, 13, 15-22.	0.2	3
7	ææ‰©æ€§é£Ÿå"ã®æ¶^化特性. Kagaku To Seibutsu, 2020, 58, 596-598.	0.0	0
8	Starch digestibility of various Japanese commercial noodles made from different starch sources. Food Chemistry, 2019, 283, 390-396.	4.2	20
9	Studies of the texture, functional components and in vitro starch digestibility of rolled barley. Food Chemistry, 2019, 274, 672-678.	4.2	25
10	Effect of postâ€cooking storage on texture and in vitro starch digestion of Japonica rice. Journal of Food Process Engineering, 2019, 42, e12985.	1.5	16
11	Changes in Starch Digestibility and Tissue Structure of Cooked Rice Grain Under Different <i>In vitro </i> Simulated Gastric Digestive Conditions. Journal of the Japanese Society for Food Science and Technology, 2019, 66, 170-178.	0.1	5
12	Impact of food structure and cell matrix on digestibility of plant-based food. Current Opinion in Food Science, 2018, 19, 36-41.	4.1	50
13	In vitro examination of starch digestibility and changes in antioxidant activities of selected cooked pigmented rice. Food Bioscience, 2018, 23, 129-136.	2.0	23
14	The importance of an oral digestion step in evaluating simulated in vitro digestibility of starch from cooked rice grain. Food Research International, 2017, 94, 6-12.	2.9	59
15	Evaluation of the Physical and Functional Properties of Barley Noodle with Added Gluten. Journal of the Japanese Society for Food Science and Technology, 2017, 64, 567-576.	0.1	6
16	Impact of structural characteristics on starch digestibility of cooked rice. Food Chemistry, 2016, 191, 91-97.	4.2	103
17	Impact of the degree of cooking on starch digestibility of rice – An in vitro study. Food Chemistry, 2016, 191, 98-104.	4.2	87
18	Changes in Nonwaxy <scp>J</scp> aponica Rice Grain Texturalâ€Related Properties during Cooking. Journal of Food Quality, 2014, 37, 177-184.	1.4	26

#	Article	IF	CITATIONS
19	Changes in histological tissue structure and textural characteristics of rice grain during cooking process. Food Structure, 2014, 1, 164-170.	2.3	56
20	Visualization of the coated layer at the surface of rice grain cooked with varying amounts of cooking water. Journal of Cereal Science, 2012, 56, 404-409.	1.8	58