
Sonia Colombo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/50095/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fast detection of PKA activity in Saccharomyces cerevisiae cell population using AKAR fluorescence resonance energy transfer probes. Cellular Signalling, 2022, 92, 110262.	3.6	5
2	Lack of SNF1 induces localization of active Ras in mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 2020, 523, 130-134.	2.1	7
3	In S. cerevisiae hydroxycitric acid antagonizes chronological aging and apoptosis regardless of citrate lyase. Apoptosis: an International Journal on Programmed Cell Death, 2020, 25, 686-696.	4.9	2
4	Introducing fluorescence resonance energy transfer-based biosensors for the analysis of cAMP-PKA signalling in the fungal pathogen Candida glabrata. Cellular Microbiology, 2018, 20, e12863.	2.1	14
5	Antagonism between salicylate and the cAMP signal controls yeast cell survival and growth recovery from quiescence. Microbial Cell, 2018, 5, 344-356.	3.2	5
6	Detection of cAMP and of PKA activity in Saccharomyces cerevisiae single cells using Fluorescence Resonance Energy Transfer (FRET) probes. Biochemical and Biophysical Research Communications, 2017, 487, 594-599.	2.1	19
7	Involvement of Aif1 in apoptosis triggered by lack of Hxk2 in the yeast <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2016, 16, fow016.	2.3	20
8	The transcription factor Swi4 is target for PKA regulation of cell size at the G ₁ to S transition in <i>Saccharomyces cerevisiae</i> . Cell Cycle, 2015, 14, 2429-2438.	2.6	20
9	Methods to Study the Ras2 Protein Activation State and the Subcellular Localization of Ras-GTP in Saccharomyces cerevisiae. Methods in Molecular Biology, 2014, 1120, 391-405.	0.9	3
10	Evidence for adenylate cyclase as a scaffold protein for Ras2–Ira interaction in Saccharomyces cerevisie. Cellular Signalling, 2014, 26, 1147-1154.	3.6	6
11	Live-cell imaging of endogenous Ras-GTP shows predominant Ras activation at the plasma membrane and in the nucleus in Saccharomyces cerevisiae. International Journal of Biochemistry and Cell Biology, 2013, 45, 384-394.	2.8	31
12	Nuclear Ras2-GTP Controls Invasive Growth in Saccharomyces cerevisiae. PLoS ONE, 2013, 8, e79274.	2.5	6
13	Lack of <i>HXK2</i> Induces Localization of Active Ras in Mitochondria and Triggers Apoptosis in the Yeast <i>Saccharomyces cerevisiae</i> . Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-10.	4.0	35
14	The role of feedback control mechanisms on the establishment of oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevisiae. Eurasip Journal on Bioinformatics and Systems Biology, 2012, 2012, 10.	1.4	26
15	Simulation of the Ras/cAMP/PKA pathway in budding yeast highlights the establishment of stable oscillatory states. Biotechnology Advances, 2012, 30, 99-107.	11.7	28
16	Structure-Activity Studies on Arylamides and Arysulfonamides Ras Inhibitors. Current Cancer Drug Targets, 2010, 10, 192-199.	1.6	9
17	Whi2p links nutritional sensing to actin-dependent Ras-cAMP-PKA regulation and apoptosis in yeast. Journal of Cell Science, 2009, 122, 706-715.	2.0	88
18	Design, Synthesis, and Biological Evaluation of Levoglucosenoneâ€Derived Ras Activation Inhibitors. ChemMedChem, 2009, 4, 524-528.	3.2	31

Sonia Colombo

#	Article	IF	CITATIONS
19	Modeling and stochastic simulation of the Ras/cAMP/PKA pathway in the yeast Saccharomyces cerevisiae evidences a key regulatory function for intracellular guanine nucleotides pools. Journal of Biotechnology, 2008, 133, 377-385.	3.8	46
20	Glucoseâ€Derived Ras Pathway Inhibitors: Evidence of Ras–Ligand Binding and Ras–GEF (Cdc25) Interaction Inhibition. ChemBioChem, 2007, 8, 1376-1379.	2.6	23
21	The large N-terminal domain of Cdc25 protein of the yeastSaccharomyces cerevisiaeis required for glucose-induced Ras2 activation. FEMS Yeast Research, 2007, 7, 1270-1275.	2.3	12
22	Sugar-Derived Ras Inhibitors: Group Epitope Mapping by NMR Spectroscopy and Biological Evaluation. European Journal of Organic Chemistry, 2006, 2006, 3707-3720.	2.4	24
23	Design, Synthesis and Biological Evaluation of Sugar-Derived Ras Inhibitors. ChemBioChem, 2005, 6, 1839-1848.	2.6	39
24	Activation State of the Ras2 Protein and Glucose-induced Signaling in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 46715-46722.	3.4	116
25	Design and Characterization of a New Class of Inhibitors of Ras Activation. Annals of the New York Academy of Sciences, 2004, 1030, 52-61.	3.8	13
26	Role of guanine nucleotides in the regulation of the Ras/cAMP pathway in Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Molecular Cell Research, 2001, 1538, 181-189.	4.1	47
27	Nutrient-induced signal transduction through the protein kinase A pathway and its role in the control of metabolism, stress resistance, and growth in yeast. Enzyme and Microbial Technology, 2000, 26, 819-825.	3.2	122
28	Characterization of a new set of mutants deficient in fermentation-induced loss of stress resistance for use in frozen dough applications. International Journal of Food Microbiology, 2000, 55, 187-192.	4.7	32
29	A specific mutation in Saccharomyces cerevisiae adenylate cyclase, Cyr1K1876M, eliminates glucose- and acidification-induced cAMP signalling and delays glucose-induced loss of stress resistance. International Journal of Food Microbiology, 2000, 55, 103-107.	4.7	10
30	Characterization and Properties of Dominant-negative Mutants of the Ras-specific Guanine Nucleotide Exchange Factor CDC25Mm. Journal of Biological Chemistry, 1999, 274, 36656-36662.	3.4	21
31	A mutation in Saccharomyces cerevisiae adenylate cyclase, Cyr1K1876M, specifically affects glucose- and acidification-induced cAMP signalling and not the basal cAMP level. Molecular Microbiology, 1999, 33, 363-376.	2.5	41
32	Molecular cloning, nucleotide sequence and expression of aSulfolobus solfataricusgene encoding a class II fumarase. FEBS Letters, 1994, 337, 93-98.	2.8	19
33	Purification and characterization of a thermostable carboxypeptidase from the extreme thermophilic archaebacterium Sulfolobus solfataricus. FEBS Journal, 1992, 206, 349-357.	0.2	43